在三维提升视频编码框架中,视频运动场景切换时相邻视频帧之间的时间相关性将显著减弱,使得解码视频图像在场景切换处质量急剧下降。针对这一问题,提出了一种新的基于视频亮度分量的场景切换检测方法,并根据场景切换自适应分配图像组(gr...在三维提升视频编码框架中,视频运动场景切换时相邻视频帧之间的时间相关性将显著减弱,使得解码视频图像在场景切换处质量急剧下降。针对这一问题,提出了一种新的基于视频亮度分量的场景切换检测方法,并根据场景切换自适应分配图像组(group of picture GOP)大小。实验结果表明,该自适应分配GOP策略有效提高了三维提升小波视频图像的编解码质量,降低了场景切换对视频编码的影响。展开更多
文摘变分自编码(variational autoencoder,VAE)是一种基于连续隐向量的生成模型,通过变分近似构建目标函数,其中的生成模型及变分推理模型均采用神经网络结构.传统变分自编码模型中的变分识别模型假设多维隐变量之间是相互独立的,这种假设简化了推理过程,但是这使得变分下界过于松弛,同时限制了隐向量空间的表示能力.提出混合变分自编码(mixture of variational autoencoder,MVAE)模型,它通过多个变分自编码组件生成样本数据,丰富了变分识别模型结构,同时扩展了隐向量表示空间.该模型以连续型隐向量作为模型的隐层表示,其先验分布为高斯分布;以离散型隐向量作为各组件的指示向量,其先验分布为多项式分布.对于MVAE模型的变分优化目标,采用重参策略和折棍参数化策略处理目标函数,并用随机梯度下降方法求解模型参数.MVAE采用混合组件的方法可以增强隐变量空间的表示能力,提高近似推理精度,重参策略和折棍参数化策略可以有效求解对应的优化问题.最后在MNIST和OMNIGLOT数据集上设计了对比实验,验证了MVAE模型较高的推理精度及较强的隐变量空间表示能力.
文摘在三维提升视频编码框架中,视频运动场景切换时相邻视频帧之间的时间相关性将显著减弱,使得解码视频图像在场景切换处质量急剧下降。针对这一问题,提出了一种新的基于视频亮度分量的场景切换检测方法,并根据场景切换自适应分配图像组(group of picture GOP)大小。实验结果表明,该自适应分配GOP策略有效提高了三维提升小波视频图像的编解码质量,降低了场景切换对视频编码的影响。