Fe3O4 magnetic particles were synthesize by chemical co precipitation. Sodium oleate and poly(ethyleneglycol) 4000 were used as bilayer surfactants toenvelope the ultra fine Fe3O4 particles. Then stabilized water base...Fe3O4 magnetic particles were synthesize by chemical co precipitation. Sodium oleate and poly(ethyleneglycol) 4000 were used as bilayer surfactants toenvelope the ultra fine Fe3O4 particles. Then stabilized water base magnetic fluid was obtained. Experiments indicated that surfactants and pH value of the solution had great effect on the stability and size of the magnetic fluid when Fe3O4 particles were synthesized and enveloped. It was the first time to employ this method to prepare magnetic fluid. Using laser diffraction particle size analyzer we found that the average diameter of magnetic fluid was lessen than 84 nanometer. Its magnetization was measured on magnetic balance and the result amounted to 3.84×103A·m-1. Further more, XRD and IR analysis measurements were employed to substantiate the existence of Fe3O4 and surfactant structure. The magnetic fluid can be used as targeted part of nanometer targeted drug delivery system.展开更多
Nanocrystalline Fe-doped TiO2 with size of 6070 nm was prepared by a sol-gel technique, followed by freeze-drying treatment for 2 h. Thermogravimetric and differential thermal analyses, X-ray diffraction, scanning (e...Nanocrystalline Fe-doped TiO2 with size of 6070 nm was prepared by a sol-gel technique, followed by freeze-drying treatment for 2 h. Thermogravimetric and differential thermal analyses, X-ray diffraction, scanning (electron) microscope, laser diffraction particle size analyzer and UV-Vis spectrophotometer technologies were used to characterize the product. The photocatalytic activities of the samples were evaluated by the degradation of wastewater of paper-making. The effects of Fe ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the iron content plays an essential role in affecting the photocatalytic activity of the Fe-doped TiO2 and the optimum content of Fe-doped is 0.05% (mass fraction). The photocatalytic activity of samples with lower content of Fe-doped is higher than that of pure TiO2 in the treatment of paper-making wastewater. The photo-degradation effect of paper-making effluent is the best by means of Fe-doped TiO2 with 0.05% Fe.展开更多
文摘Fe3O4 magnetic particles were synthesize by chemical co precipitation. Sodium oleate and poly(ethyleneglycol) 4000 were used as bilayer surfactants toenvelope the ultra fine Fe3O4 particles. Then stabilized water base magnetic fluid was obtained. Experiments indicated that surfactants and pH value of the solution had great effect on the stability and size of the magnetic fluid when Fe3O4 particles were synthesized and enveloped. It was the first time to employ this method to prepare magnetic fluid. Using laser diffraction particle size analyzer we found that the average diameter of magnetic fluid was lessen than 84 nanometer. Its magnetization was measured on magnetic balance and the result amounted to 3.84×103A·m-1. Further more, XRD and IR analysis measurements were employed to substantiate the existence of Fe3O4 and surfactant structure. The magnetic fluid can be used as targeted part of nanometer targeted drug delivery system.
文摘Nanocrystalline Fe-doped TiO2 with size of 6070 nm was prepared by a sol-gel technique, followed by freeze-drying treatment for 2 h. Thermogravimetric and differential thermal analyses, X-ray diffraction, scanning (electron) microscope, laser diffraction particle size analyzer and UV-Vis spectrophotometer technologies were used to characterize the product. The photocatalytic activities of the samples were evaluated by the degradation of wastewater of paper-making. The effects of Fe ion implantation on the photocatalytic activity of TiO2 were also discussed. The results show that the iron content plays an essential role in affecting the photocatalytic activity of the Fe-doped TiO2 and the optimum content of Fe-doped is 0.05% (mass fraction). The photocatalytic activity of samples with lower content of Fe-doped is higher than that of pure TiO2 in the treatment of paper-making wastewater. The photo-degradation effect of paper-making effluent is the best by means of Fe-doped TiO2 with 0.05% Fe.