For 2 〈 y 〈 min{4, n}, we consider the focusing Hartree equation iut + Au + (|x|^-γ * |u|2)u = O, x∈ R^n Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground st...For 2 〈 y 〈 min{4, n}, we consider the focusing Hartree equation iut + Au + (|x|^-γ * |u|2)u = O, x∈ R^n Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - △ + Q = (|x|^-γ * |Q|^2)Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dichotomy for scattering versus blow-up for the Cauchy problem of (0,1) if M[u]^l-ScE[u]^Sc 〈 M[Q] ^1-sc E[Q] ^(sc= r-2/2). In this paper, we consider the complementary case M[u]^1-ScE[u]^sc 〉_ M[Q]^1-sc and obtain a criteria on blow-up and global existence for the Hartree equation (0.1).展开更多
基金supported by the National Natural Science Foundation of China(11371267)Sichuan Province Science Foundation for Youths(2012JQ0011)
文摘For 2 〈 y 〈 min{4, n}, we consider the focusing Hartree equation iut + Au + (|x|^-γ * |u|2)u = O, x∈ R^n Let M[u] and E[u] denote the mass and energy, respectively, of a solution u, and Q be the ground state of - △ + Q = (|x|^-γ * |Q|^2)Q. Guo and Wang [Z. Angew. Math. Phy.,2014] established a dichotomy for scattering versus blow-up for the Cauchy problem of (0,1) if M[u]^l-ScE[u]^Sc 〈 M[Q] ^1-sc E[Q] ^(sc= r-2/2). In this paper, we consider the complementary case M[u]^1-ScE[u]^sc 〉_ M[Q]^1-sc and obtain a criteria on blow-up and global existence for the Hartree equation (0.1).