期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
30万m^(3)/h电厂烟气碳捕集系统能流特征与热量耗散途径
1
作者 王志勇 王朝威 +6 位作者 张良 杨晋宁 杨东泰 刘毅 杨阳 徐冬 魏小林 《洁净煤技术》 北大核心 2025年第5期106-114,共9页
介绍30万Nm^(3)/h电厂烟气碳捕集系统与电厂热力系统物质与能量耦合原理。分析典型工况下碳捕集系统的物质流与能量流全过程,明确煮沸热耗散于物流显热(45.10%)和再生工艺热(54.90%)的份额,以及再生工艺热中化学反应热(70.14%)和汽化潜... 介绍30万Nm^(3)/h电厂烟气碳捕集系统与电厂热力系统物质与能量耦合原理。分析典型工况下碳捕集系统的物质流与能量流全过程,明确煮沸热耗散于物流显热(45.10%)和再生工艺热(54.90%)的份额,以及再生工艺热中化学反应热(70.14%)和汽化潜热(29.86%)的份额。在5种冷却耗散途径中,再生气冷却器5热量品位最高(等级80℃),耗散占比9.13%,其次为热量品位第2(等级60℃)、占比最大26.77%的贫液进吸收塔冷却器4,二者可相互转化,是余热利用的关键环节。研究改变碳捕集率和保持碳捕集率调整不同因素(富液分流、贫富液换热端差、贫液负载、吸收剂浓度及比例(MEA:MDEA)等)对冷却耗散和潜显热耗散比的影响规律。结果表明仅调整碳捕集率不会影响潜显热耗散比(0.34),富液分流可显著改变潜显热耗散比,自富液分流比例0.05下的0.63快速下降至0.20下的0.11。缩小贫富液换热端差可快速提高潜显热耗散比,可从12℃端差下的0.22提高至6℃下的0.44。贫液负载从0.19上升至0.28时,潜显热耗散比从0.48下降到0.12。提高吸收剂比例后(0.5~2.0),再生过程中水分蒸发需求扩大,潜显热耗散比显著增加(从0.11快速上升至0.65)。 展开更多
关键词 碳捕集 化学吸收 物质流 能量流 热量耗散
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部