期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
实体驱动的双向LSTM篇章连贯性建模 被引量:2
1
作者 杜舒静 徐凡 王明文 《中文信息学报》 CSCD 北大核心 2017年第6期67-74,共8页
篇章连贯性建模是自然语言处理研究领域的一个基础问题。主流的篇章连贯性模型分为两大类,分别是基于实体网格的连贯性模型和基于神经网络的篇章连贯性模型。其中,基于实体网格的篇章连贯性模型需要进行特征提取,而基于深度学习的模型... 篇章连贯性建模是自然语言处理研究领域的一个基础问题。主流的篇章连贯性模型分为两大类,分别是基于实体网格的连贯性模型和基于神经网络的篇章连贯性模型。其中,基于实体网格的篇章连贯性模型需要进行特征提取,而基于深度学习的模型没有充分考虑篇章中句子间的实体链接对连贯性建模的重要作用。基于此,该文首先抽取篇章中相邻句子的实体信息,将其进行分布式表示,然后将此信息通过多种简单且有效的向量操作融合至句子级的双向LSTM深度学习模型之中。在汉语和英语篇章语料上的句子排序和中英文机器翻译连贯性检测两种任务上的实验表明该文提出的模型性能和现有模型相比有所提升,尤其在中文上有显著提升。 展开更多
关键词 实体 篇章连贯性 双向LSTM 分布式表示
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部