Based on the logical labelling method, we prepare an effective pure state in a subsystem of a three spin system via liquid nuclear magnetic resonance technique. Then with this subspace effective pure state we implemen...Based on the logical labelling method, we prepare an effective pure state in a subsystem of a three spin system via liquid nuclear magnetic resonance technique. Then with this subspace effective pure state we implement the Deutsch-Jozsa algorithm. The tomography for the subspace effective pure state and the corresponding spectrum of the output for the Deutsch-Jozsa algorithm agree with theoretical predictions, which shows that we have successfully implemented the Deutsch-Jozsa algorithm in a subsystem of a nuclear spin system and demonstrated a subspace quantum computation.展开更多
We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform...We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.展开更多
The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase tra...The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.展开更多
Bell's theorem without inequalities is applied for some general Greenberger-Horn-Zeilinger (GHZ) states and W states and a wide range of such states can exhibit all-versus-nothing conflict between local realism and...Bell's theorem without inequalities is applied for some general Greenberger-Horn-Zeilinger (GHZ) states and W states and a wide range of such states can exhibit all-versus-nothing conflict between local realism and quantum theory. The case of standard GHZ state is contained in our proposal. For some generalized GHZ states more intensive violation on local realism is manifested.展开更多
The quantum random walk is a possible approach to construct new quantum search algorithms. It has been shown by Shenvi et al. [Phys. Rev. A 67(2003)52307] that a kind of algorithm can perform an oracle search on a d...The quantum random walk is a possible approach to construct new quantum search algorithms. It has been shown by Shenvi et al. [Phys. Rev. A 67(2003)52307] that a kind of algorithm can perform an oracle search on a database of N items with O(√N) calling to the oracle, yielding a speedup similar to other quantum search algorithms. We study the effect of white or Gaussian noise on this algorithm. The algorithm loses efficiency when noise is added. We also show that noise on the target state plays a more important role than that on other states. Finally we compare the effects of similar types of noise in the quantum random walk search algorithm and Grover's search algorithm.展开更多
We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and ...We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous straintuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described.In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and xray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting.展开更多
The cluster state is an indispensable resource for one-way quantum computing (lWQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres...The cluster state is an indispensable resource for one-way quantum computing (lWQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres) in different diamonds. The entanglement of nuclear spins within an NV centre is made by hyperfine coupling via electron spin, and the entanglement between remote NV centres is accomplished using the parity projection of emitted photons. We discus the possibility to build large-scale nuclear-spin cluster states with diamonds.展开更多
Among several dark matter candidates,bosonic ultra-light(sub-meV)dark matter is well motivated because it could couple to the Standard Model and induce new forces.Previous MICROSCOPE and E¨ot–Wash torsion experi...Among several dark matter candidates,bosonic ultra-light(sub-meV)dark matter is well motivated because it could couple to the Standard Model and induce new forces.Previous MICROSCOPE and E¨ot–Wash torsion experiments have achieved high accuracy in the sub-1 Hz region.However,at higher frequencies there is still a lack of relevant experimental research.We propose an experimental scheme based on the diamagnetic levitated micromechanical oscillator,one of the most sensitive sensors for acceleration sensitivity below the kilohertz scale.In order to improve the measurement range,we utilize a sensor whose resonance frequencyω0 could be adjusted from 0.1 Hz to 100 Hz.The limits of the coupling constant gB-Lare improved by more than 10 times compared to previous reports,and it may be possible to achieve higher accuracy by using the array of sensors in the future.展开更多
We present the experimental realization of this gate with a solution of chlorostyrene molecules. Our method does not depend heavily on the two-qubit controlled operation, which used to serve as the basic quantum opera...We present the experimental realization of this gate with a solution of chlorostyrene molecules. Our method does not depend heavily on the two-qubit controlled operation, which used to serve as the basic quantum operation in quantum computing. At present, we use transition operator that can be applied to all qubits in one operation. It appears that no experimental realization has yet been reported up to now regarding the implementation of quantum Toffoli gate using transition pulse on three-qubit nuclear magnetic resonance quantum computers. In addition, our method is experimentally convenient to be extended to more qubits.展开更多
Using nuciear magnetic resonance techniques with a solution of cytosine molecules,we show an implementation of certain quantum logic gates(including NOT gate,square-root of NOT gate and controlled~NOT gate),which have...Using nuciear magnetic resonance techniques with a solution of cytosine molecules,we show an implementation of certain quantum logic gates(including NOT gate,square-root of NOT gate and controlled~NOT gate),which have central importance in quantum computing.In addition,experimental results show that nuclear magnetic resonance spectroscopy can efHciently measure the resuit of quantum computing without attendant wave-function collapse.展开更多
基金supported by the National Key Basic Research Program of China(973)(2013CB921802)Fundamental Research Funds for the Central Universities,China,State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,China(KSL-CUSAb-2012-03)~~
基金Supported by the National Key Basic Research and Development Programme of China under Grant No 2001CB309300, the National Natural Science Foundation of China under Grant Nos 10425524 and 10574125, and the European Commission under Contact No 007065 (Marie Curie Action).
文摘Based on the logical labelling method, we prepare an effective pure state in a subsystem of a three spin system via liquid nuclear magnetic resonance technique. Then with this subspace effective pure state we implement the Deutsch-Jozsa algorithm. The tomography for the subspace effective pure state and the corresponding spectrum of the output for the Deutsch-Jozsa algorithm agree with theoretical predictions, which shows that we have successfully implemented the Deutsch-Jozsa algorithm in a subsystem of a nuclear spin system and demonstrated a subspace quantum computation.
基金the Strategic Priority Research Program of CAS(Grant No.XDC07020200)the National Key R&D Program of China(Grants No.2018YFA0306600)+5 种基金the National Natural Science Foundation of China(Grant Nos.11974330 and 92165206)the Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH004)the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0302200 and 2021ZD0301603)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY050000)the Hefei Comprehensive National Science Centerthe Fundamental Research Funds for the Central Universities。
文摘We report a design and implementation of a field-programmable-gate-arrays(FPGA)based hardware platform,which is used to realize control and signal readout of trapped-ion-based multi-level quantum systems.This platform integrates a four-channel 2.8 Gsps@14 bits arbitrary waveform generator,a 16-channel 1 Gsps@14 bits direct-digital-synthesisbased radio-frequency generator,a 16-channel 8 ns resolution pulse generator,a 10-channel 16 bits digital-to-analogconverter module,and a 2-channel proportion integration differentiation controller.The hardware platform can be applied in the trapped-ion-based multi-level quantum systems,enabling quantum control of multi-level quantum system and highdimensional quantum simulation.The platform is scalable and more channels for control and signal readout can be implemented by utilizing more parallel duplications of the hardware.The hardware platform also has a bright future to be applied in scaled trapped-ion-based quantum systems.
基金Supported by the National Key Basic Research Program under Grant Nos 2013CB921800 and 2014CB848700the National Science Fund for Distinguished Young Scholars under Grant No 11425523+4 种基金the National Natural Science Foundation of China under Grant Nos 11375167,11227901,91021005 and 11575173the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01030400the Research Fund for the Doctoral Program of Higher Education of China under Grant No 20113402110044the China Postdoctoral Science Foundationthe Fundamental Research Funds for the Central Universities
文摘The geometric phase has become a fundamental concept in many fields of physics since it was revealed. Recently, the study of the geometric phase has attracted considerable attention in the context of quantum phase transition, where the ground state properties of the system experience a dramatic change induced by a variation of an external parameter. In this work, we experimentally measure the ground-state geometric phase of the three-spin XY model by utilizing the nuclear magnetic resonance technique. The experimental results indicate that the geometric phase could be used as a fingerprint of the ground-state quantum phase transition of many-body systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10375057 and 10425524, the National Basic Research Programme of China under Grant No 2001CB309300, the ASTAR (No 012-304-105), Chinese Academy of Sciences. and the Marie Curie Action Programme of the European Union.
文摘Bell's theorem without inequalities is applied for some general Greenberger-Horn-Zeilinger (GHZ) states and W states and a wide range of such states can exhibit all-versus-nothing conflict between local realism and quantum theory. The case of standard GHZ state is contained in our proposal. For some generalized GHZ states more intensive violation on local realism is manifested.
文摘The quantum random walk is a possible approach to construct new quantum search algorithms. It has been shown by Shenvi et al. [Phys. Rev. A 67(2003)52307] that a kind of algorithm can perform an oracle search on a database of N items with O(√N) calling to the oracle, yielding a speedup similar to other quantum search algorithms. We study the effect of white or Gaussian noise on this algorithm. The algorithm loses efficiency when noise is added. We also show that noise on the target state plays a more important role than that on other states. Finally we compare the effects of similar types of noise in the quantum random walk search algorithm and Grover's search algorithm.
基金the National Natural Science Foundation of China (Grant Nos. 81788101, T2125011, 11861161004, and 12104447)the National Key R&D Program of China (Grant No. 2018YFA0306600)+5 种基金the Chinese Academy of Sciences (Grant Nos. XDC07000000, GJJSTD20200001,QYZDY-SSW-SLH004,Y201984, and YSBR-068)Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0303204 and 2021ZD0302200)the Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000)Hefei Comprehensive National Science CenterChina Postdoctoral Science Foundation (Grant No. 2020M671858)the Fundamental Research Funds for the Central Universities。
文摘We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous straintuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described.In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and xray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10774042 and 10875039)the Chinese Academy of Sciences and the National Fundamental Research Program of China(Grant No.10974225)
文摘The cluster state is an indispensable resource for one-way quantum computing (lWQC). We propose a practical scheme for constructing cluster states among nuclear spins in nitrogen-vacancy defect centres (NV centres) in different diamonds. The entanglement of nuclear spins within an NV centre is made by hyperfine coupling via electron spin, and the entanglement between remote NV centres is accomplished using the parity projection of emitted photons. We discus the possibility to build large-scale nuclear-spin cluster states with diamonds.
基金the National Natural Science Foundation of China(Grant Nos.12205291,12075115,12075116,11890702,and 12150011)the Fundamental Research Funds for the Central UniversitiesAnhui Provincial Natural Science Foundation(Grant No.2208085QA16)。
文摘Among several dark matter candidates,bosonic ultra-light(sub-meV)dark matter is well motivated because it could couple to the Standard Model and induce new forces.Previous MICROSCOPE and E¨ot–Wash torsion experiments have achieved high accuracy in the sub-1 Hz region.However,at higher frequencies there is still a lack of relevant experimental research.We propose an experimental scheme based on the diamagnetic levitated micromechanical oscillator,one of the most sensitive sensors for acceleration sensitivity below the kilohertz scale.In order to improve the measurement range,we utilize a sensor whose resonance frequencyω0 could be adjusted from 0.1 Hz to 100 Hz.The limits of the coupling constant gB-Lare improved by more than 10 times compared to previous reports,and it may be possible to achieve higher accuracy by using the array of sensors in the future.
基金Supported by the National Natural Science Foundation of China under Grant Nos.10075041 and 10075044the Science Foundation of USTC for Young Scientists.
文摘We present the experimental realization of this gate with a solution of chlorostyrene molecules. Our method does not depend heavily on the two-qubit controlled operation, which used to serve as the basic quantum operation in quantum computing. At present, we use transition operator that can be applied to all qubits in one operation. It appears that no experimental realization has yet been reported up to now regarding the implementation of quantum Toffoli gate using transition pulse on three-qubit nuclear magnetic resonance quantum computers. In addition, our method is experimentally convenient to be extended to more qubits.
基金Supported by the National Natural Science Foundation of China under Grant No.19875050,and the Science Foundation of Chinese Academy of Sciences.
文摘Using nuciear magnetic resonance techniques with a solution of cytosine molecules,we show an implementation of certain quantum logic gates(including NOT gate,square-root of NOT gate and controlled~NOT gate),which have central importance in quantum computing.In addition,experimental results show that nuclear magnetic resonance spectroscopy can efHciently measure the resuit of quantum computing without attendant wave-function collapse.