期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于WATVFEMD-SAM的轴承声信号故障诊断 被引量:2
1
作者 杜正昱 马洁 《组合机床与自动化加工技术》 北大核心 2021年第10期23-27,共5页
滚动轴承声信号与振动信号相比其信噪比更低,此外还会受到强脉冲噪声的影响。频谱幅度调制(SAM)是一种新的故障特征提取方法,该方法能够有效识别脉冲噪声并对信号进行非线性滤波。然而尽管其可抑制脉冲噪声,但依然会受到其他背景噪声的... 滚动轴承声信号与振动信号相比其信噪比更低,此外还会受到强脉冲噪声的影响。频谱幅度调制(SAM)是一种新的故障特征提取方法,该方法能够有效识别脉冲噪声并对信号进行非线性滤波。然而尽管其可抑制脉冲噪声,但依然会受到其他背景噪声的干扰导致其滤波效果受到影响。针对上述问题,提出一种加权平均时变滤波经验模态分解WATVFEMD及SAM的滚动轴承声信号特征提取方法。首先对声信号进行TVFEMD分解;其次,提出了一种强调敏感分量的新型指标,利用该指标对各个IMFs加权并重构为WATVFEMD信号;最后,对重构信号进行SAM并提取故障特征频率。仿真研究及实验表明,相比常用的快速谱峭度方法,所提出的WATVFEMD-SAM能够更加有效地提取声信号故障特征频率,该方法的有效性得以验证。 展开更多
关键词 加权平均时变滤波经验模态分解 声信号 频谱幅度调制 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部