期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合机器学习与动态模型优化的雪崩预测及防治策略
1
作者 金永超 王志坚 +3 位作者 贾慧爽 杜云天 胡鑫婷 陈学斌 《应用科学学报》 北大核心 2025年第1期35-50,共16页
爆破是防止雪崩的有效方法,但合适的爆破时间、爆破位置和爆破能量很难确定。本文首先收集、爬取了关于雪崩的指标数据,并对数据进行预处理。然后对数据进行探索性数据分析,重点分析时间与雪崩发生的关系,发现雪崩具有明显的季节性。以... 爆破是防止雪崩的有效方法,但合适的爆破时间、爆破位置和爆破能量很难确定。本文首先收集、爬取了关于雪崩的指标数据,并对数据进行预处理。然后对数据进行探索性数据分析,重点分析时间与雪崩发生的关系,发现雪崩具有明显的季节性。以数据的80%为训练集,20%为测试集,建立支持向量机、随机森林和感知器神经网络模型,并利用贝叶斯优化算法对模型进行参数寻优,结果显示感知器神经网络的准确率最高。最后根据损失度对3个模型进行集成,对3个集成策略进行对比,结果显示SVM-RF-MLP模型的准确率最高为0.952。此后,建立基础的爆破能量模型,考虑山体高度、雪层密度随时间的变化,再基于历史数据寻找雪层稳定性的分布规律,构建动态雪崩稳定性爆破能量模型。通过对数据进行模拟验证以及对其进行三维山体可视化分析,获得最佳的爆破时机、爆破位置和爆破能量。 展开更多
关键词 贝叶斯优化算法 SVM-RF-MLP模型 动态雪崩稳定性爆破能量模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部