The periodic initial value problem of a fifth-order shallow water equation t u 2 x t u + 3 x u 5 x u + 3u x u 2 x u 2 x u u 3 x u = 0 is shown to be globally well-posed in Sobolev spaces˙ H s (T) for s 〉 2/3 by ...The periodic initial value problem of a fifth-order shallow water equation t u 2 x t u + 3 x u 5 x u + 3u x u 2 x u 2 x u u 3 x u = 0 is shown to be globally well-posed in Sobolev spaces˙ H s (T) for s 〉 2/3 by I-method. For this equation lacks scaling invariance, we first reconsider the local result and pay special attention to the relationship between the lifespan of the local solution and the initial data, and then prove the almost conservation law, and finally obtain the global well-posedness by an iteration process.展开更多
In this paper, the authors consider a system of degenerate Davey-Stewartson equations. They prove the global existence of weak solutions in some weighted function spaces and the decay of weak solutions in some anisotr...In this paper, the authors consider a system of degenerate Davey-Stewartson equations. They prove the global existence of weak solutions in some weighted function spaces and the decay of weak solutions in some anisotropic spaces for appropriate initial data.展开更多
In this paper we consider tile iaitial boundary value problems for the nonlinear Schrodinger equation ivtwith boundary conditions u(t,x)is the exterior domain of the unit ball B(0,1).We prove that the smooth,radially ...In this paper we consider tile iaitial boundary value problems for the nonlinear Schrodinger equation ivtwith boundary conditions u(t,x)is the exterior domain of the unit ball B(0,1).We prove that the smooth,radially symmetric solutions of the problem exists globally and uniquely when and 1 < 5 and also prove that the solutions blow up when and p under appropriate conditions on no and obtain some properties for blow-up solutions.展开更多
This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing an...This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.展开更多
In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Usi...In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Using the general well-posedness principle introduced by I. Bejenaru and T. Tao, we prove 1 that the modified Kawahara equation is ill-posed for the initial data in H8 (It) with s 〈 - and that the Kaup-Kupershmidt equation is ill-posed for the initial data in HS(It) with s〈0.展开更多
This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact ...This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact kernel sections for the associated process by using a suitable decomposition of the equations.展开更多
We investigate the refined Carleson’s problem of the free Ostrovsky equation{ut+■_(z)^(3)u+■_(x)^(-1)u=0,u(x,0)=f(x)where(x,t)∈R×R and f∈H^(s)(R).We illustrate the Hausdorff dimension of the divergence set f...We investigate the refined Carleson’s problem of the free Ostrovsky equation{ut+■_(z)^(3)u+■_(x)^(-1)u=0,u(x,0)=f(x)where(x,t)∈R×R and f∈H^(s)(R).We illustrate the Hausdorff dimension of the divergence set for the Ostrovsky equationα1,U(s)=1-2 s,1/4≤s≤1/2.展开更多
This paper studies the long time behavior of solutions to the Navier-Stokes equations with linear damping on R^2. The authors prove the existence of L^2-global attractor and Hi-global attractor by showing that the cor...This paper studies the long time behavior of solutions to the Navier-Stokes equations with linear damping on R^2. The authors prove the existence of L^2-global attractor and Hi-global attractor by showing that the corresponding semigroup is asymptotically compact. Thereafter, they establish that the two attractors are the same and thus reveal the asymptotic smoothing effect of the solutions.展开更多
基金supported by NSFC (10771074)NSFC-NSAF(10976026)+1 种基金Yang was partially supported by NSFC (10801055 10901057)
文摘The periodic initial value problem of a fifth-order shallow water equation t u 2 x t u + 3 x u 5 x u + 3u x u 2 x u 2 x u u 3 x u = 0 is shown to be globally well-posed in Sobolev spaces˙ H s (T) for s 〉 2/3 by I-method. For this equation lacks scaling invariance, we first reconsider the local result and pay special attention to the relationship between the lifespan of the local solution and the initial data, and then prove the almost conservation law, and finally obtain the global well-posedness by an iteration process.
文摘In this paper, the authors consider a system of degenerate Davey-Stewartson equations. They prove the global existence of weak solutions in some weighted function spaces and the decay of weak solutions in some anisotropic spaces for appropriate initial data.
文摘In this paper we consider tile iaitial boundary value problems for the nonlinear Schrodinger equation ivtwith boundary conditions u(t,x)is the exterior domain of the unit ball B(0,1).We prove that the smooth,radially symmetric solutions of the problem exists globally and uniquely when and 1 < 5 and also prove that the solutions blow up when and p under appropriate conditions on no and obtain some properties for blow-up solutions.
基金Sponsored by the National NSF (10901121, 10826091,10771074, and 10771139)NSF for Postdoctors in China (20090460952)+3 种基金NSF of Zhejiang Province (Y6080077)NSF of Guangdong Province (004020077)NSF of Wenzhou University (2008YYLQ01)Zhejiang youthteacher training project and Wenzhou 551 project
文摘This article proves that the random dynamical system generated by a twodimensional incompressible non-Newtonian fluid with multiplicative noise has a global random attractor, which is a random compact set absorbing any bounded nonrandom subset of the phase space.
基金supported by NNSFC under grant numbers 10771074 and 11171116supported in part by NNSFC under grant number 10801055+1 种基金the Doctoral Program of NEM of China under grant number 200805611026supported in part by the Fundamental Research Funds for the Central Universities under the grant number 2012ZZ0072
文摘In this article, we consider the Cauchy problems for the modified Kawahara equationδtu+μδx(u3)+αδx5u+βδx3u+γδxu=0 and the Kaup-Kupershmidt equation δtu+μuδx2u+αδx5u+βδx3u+βδx3u+γδxu=0Using the general well-posedness principle introduced by I. Bejenaru and T. Tao, we prove 1 that the modified Kawahara equation is ill-posed for the initial data in H8 (It) with s 〈 - and that the Kaup-Kupershmidt equation is ill-posed for the initial data in HS(It) with s〈0.
基金the NNSFC(10771139 and 10771074)NSF of Wenzhou University(2007L024)NSF of Guangdong Province(004020077)
文摘This note discusses the long time behavior of solutions for nonautonomous weakly dissipative Klein-Gordon-Schrodinger equations with homogeneous Dirichlet boundary condition.The authors prove the existence of compact kernel sections for the associated process by using a suitable decomposition of the equations.
基金supported by the National Natural Science Foundation of China(11571118,11401180 and 11971356)。
文摘We investigate the refined Carleson’s problem of the free Ostrovsky equation{ut+■_(z)^(3)u+■_(x)^(-1)u=0,u(x,0)=f(x)where(x,t)∈R×R and f∈H^(s)(R).We illustrate the Hausdorff dimension of the divergence set for the Ostrovsky equationα1,U(s)=1-2 s,1/4≤s≤1/2.
基金Supported by Natural Science Foundation of China(1077107410771139)+1 种基金Supported by the NSF of Wenzhou University(2007L024)Supported by the NSF of Zhejiang Province(Y6080077)
文摘This paper studies the long time behavior of solutions to the Navier-Stokes equations with linear damping on R^2. The authors prove the existence of L^2-global attractor and Hi-global attractor by showing that the corresponding semigroup is asymptotically compact. Thereafter, they establish that the two attractors are the same and thus reveal the asymptotic smoothing effect of the solutions.