The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smal...The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.展开更多
The electronic states of nano-structures are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The barrier width and the number of plane waves are proposed to be 2.5 times...The electronic states of nano-structures are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The barrier width and the number of plane waves are proposed to be 2.5 times the effective Bohr radius and 15^n, respectively, for n-dimensional nano-structures (n = 1, 2, 3). Our proposals can be widely applied in the design of various nano-structure devices.展开更多
Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topologica...Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases.It is a fundamental challenge to realize quantum transition between Z_2 nontrivial topological insulator(TI) and topological crystalline insulator(TCI) in one material because Z_2 TI and TCI have different requirements on the number of band inversions. The Z_2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe_2 alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z_2 TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.展开更多
Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects....Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift.展开更多
This paper has systematically investigated the substrate temperature and thickness dependence of surface morphology and magnetic property of CrAs compound films grown on GaAs by molecular-beam epitaxy. It finds that t...This paper has systematically investigated the substrate temperature and thickness dependence of surface morphology and magnetic property of CrAs compound films grown on GaAs by molecular-beam epitaxy. It finds that the substrate temperature affects the surface morphology and magnetic property of CrAs thin film more potently than the thickness.展开更多
We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in...We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlettriplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We find that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.展开更多
The magnetisation of heavy holes in III-V semiconductor quantum wells with Rashba spin-orbit coupling (SOC) in an external perpendicular magnetic field is studied theoretically. We concentrate on the effects on the ...The magnetisation of heavy holes in III-V semiconductor quantum wells with Rashba spin-orbit coupling (SOC) in an external perpendicular magnetic field is studied theoretically. We concentrate on the effects on the magnetisation induced by the system boundary, the l^ashba SOC and the temperature. It is found that the sawtooth-like de Haas- van Alphen (dHvA) oscillations of the magnetisation will change dramatically in the presence of such three factors. Especially, the effects of the edge states and Rashba SOC on the magnetisation are more evident when the magnetic field is smaller. The oscillation center will shift when the boundary effect is considered and the Rashba SOC will bring beating patterns to the dHvA oscillations. These effects on the dHvA oscillations are preferably observed at low temperatures. With increasing temperature, the dHvA oscillations turn to be blurred and eventually disappear.展开更多
This paper theoretically investigates the orbital magnetization of electron-doped (n-type) semiconductor het-erostructures and of hole-doped (p-type) bulk semiconductors, which are respectively described by a two-...This paper theoretically investigates the orbital magnetization of electron-doped (n-type) semiconductor het-erostructures and of hole-doped (p-type) bulk semiconductors, which are respectively described by a two-dimensional electron/hole Hamiltonian with both the included Rashba spin-orbit coupling and Zeeman splitting terms. It is the Zeeman splitting, rather than the Rashba spin-orbit coupling, that destroys the time-reversal symmetry of the semiconductor systems and results in nontrivial orbital magnetization. The results show that the magnitude of the orbital magnetization per hole and the Hall conductance in the p-type bulk semiconductors are about 10^-2-10^-1 effective Bohr magneton and 10^-1-1 e^2/h, respectively. However, the orbital magnetization per electron and the Hall conductance in the n-type semiconductor heterostructures are too small to be easily observed in experiment.展开更多
The de Haas van Alphen (dHvA) oscillations of electronic magnetization m a monotayer grapnene with structuteinduced spin orbit interaction (SOI) are studied. The results show that the dHvA oscillating centre in th...The de Haas van Alphen (dHvA) oscillations of electronic magnetization m a monotayer grapnene with structuteinduced spin orbit interaction (SOI) are studied. The results show that the dHvA oscillating centre in this system deviates from the well known (zero) value in a conventional two-dimensional electron gas. The inclusion of S0I will change the well-defined sawtooth pattern of magnetic quantum oscillations and result in a beating pattern. In addition, the SOI effects ola Hall conductance and magnetic susceptibility are also discussed.展开更多
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 60521001 and 60325416).
文摘The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60521001 and 60325416, and the Special Funds for Major State Basic Research Project of China under Grant No G2001CB309500.
文摘The electronic states of nano-structures are studied in the framework of effective-mass envelope-function theory using the plane wave basis. The barrier width and the number of plane waves are proposed to be 2.5 times the effective Bohr radius and 15^n, respectively, for n-dimensional nano-structures (n = 1, 2, 3). Our proposals can be widely applied in the design of various nano-structure devices.
基金Supported by the Major State Basic Research Development Program of China under Grant No 2016YFB0700700the National Natural Science Foundation of China(NSFC)under Grants Nos 11634003,11474273,61121491 and U1530401+1 种基金supported by the National Young 1000 Talents Plansupported by the Youth Innovation Promotion Association of CAS(2017154)
文摘Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases.It is a fundamental challenge to realize quantum transition between Z_2 nontrivial topological insulator(TI) and topological crystalline insulator(TCI) in one material because Z_2 TI and TCI have different requirements on the number of band inversions. The Z_2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe_2 alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z_2 TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.
文摘Using analytical expressions for the polarization field in GaN quantum dot, and an approximation by separating the potential into a radial and an axial, we investigate theoretically the quantum-confined Stark effects. The electron and hole energy levels and optical transition energies are calculated in the presence of an electric field in different directions. The results show that the electron and hole energy levels and the optical transition energies can cause redshifts for the lateral electric field and blueshifts for the vertical field. The rotational direction of electric field can also change the energy shift.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10334030, 10425419 and 60521001). Acknowledgments The authors acknowledge Professor Z.C. Niu, Professor F.H. Yang and Professor H.Z. Zheng for useful discussion.
文摘This paper has systematically investigated the substrate temperature and thickness dependence of surface morphology and magnetic property of CrAs compound films grown on GaAs by molecular-beam epitaxy. It finds that the substrate temperature affects the surface morphology and magnetic property of CrAs thin film more potently than the thickness.
基金Supported by the National Natural Science Foundation of China, and the Special Fund for Major State Basic Research Project of China under Grant No G2001CB309500.
文摘We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlettriplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We find that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60821061, 60776061, 10604010 and 60776063)
文摘The magnetisation of heavy holes in III-V semiconductor quantum wells with Rashba spin-orbit coupling (SOC) in an external perpendicular magnetic field is studied theoretically. We concentrate on the effects on the magnetisation induced by the system boundary, the l^ashba SOC and the temperature. It is found that the sawtooth-like de Haas- van Alphen (dHvA) oscillations of the magnetisation will change dramatically in the presence of such three factors. Especially, the effects of the edge states and Rashba SOC on the magnetisation are more evident when the magnetic field is smaller. The oscillation center will shift when the boundary effect is considered and the Rashba SOC will bring beating patterns to the dHvA oscillations. These effects on the dHvA oscillations are preferably observed at low temperatures. With increasing temperature, the dHvA oscillations turn to be blurred and eventually disappear.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60821061,60776061,10604010 and 60776063)
文摘This paper theoretically investigates the orbital magnetization of electron-doped (n-type) semiconductor het-erostructures and of hole-doped (p-type) bulk semiconductors, which are respectively described by a two-dimensional electron/hole Hamiltonian with both the included Rashba spin-orbit coupling and Zeeman splitting terms. It is the Zeeman splitting, rather than the Rashba spin-orbit coupling, that destroys the time-reversal symmetry of the semiconductor systems and results in nontrivial orbital magnetization. The results show that the magnitude of the orbital magnetization per hole and the Hall conductance in the p-type bulk semiconductors are about 10^-2-10^-1 effective Bohr magneton and 10^-1-1 e^2/h, respectively. However, the orbital magnetization per electron and the Hall conductance in the n-type semiconductor heterostructures are too small to be easily observed in experiment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 90921003,10904005,60821061,60776061and 60776063)the National Basic Research Program of China (Grant Nos. 2009CB929103 and 2009CB929300)
文摘The de Haas van Alphen (dHvA) oscillations of electronic magnetization m a monotayer grapnene with structuteinduced spin orbit interaction (SOI) are studied. The results show that the dHvA oscillating centre in this system deviates from the well known (zero) value in a conventional two-dimensional electron gas. The inclusion of S0I will change the well-defined sawtooth pattern of magnetic quantum oscillations and result in a beating pattern. In addition, the SOI effects ola Hall conductance and magnetic susceptibility are also discussed.