Electromagnetically induced transparency (EIT) is obtained in a symmetric U-shaped metamaterial, which is at- tributed to the simultaneously excited dual modes in a single resonator under lateral incidence. A large ...Electromagnetically induced transparency (EIT) is obtained in a symmetric U-shaped metamaterial, which is at- tributed to the simultaneously excited dual modes in a single resonator under lateral incidence. A large group index accom- panied with a sharp EIT-like transparency window offers potential applications for slowing down light and sensing.展开更多
The obvious circular dichroism(CD) and optical activity can be obtained based on the chiral metamaterial due to the plasmon-enhanced effect, which is very attractive for future compact devices with enhanced capabili...The obvious circular dichroism(CD) and optical activity can be obtained based on the chiral metamaterial due to the plasmon-enhanced effect, which is very attractive for future compact devices with enhanced capabilities of light manipulation. In this paper, we propose a dual-chiral metamaterial composed of bilayer asymmetric split ring resonators(ASRR)that are in mirror-symmetry shape. It is demonstrated that the CD can get enhancement in the terahertz regime. Moreover,the CD can be further improved by modulating the asymmetry of ASRR. The enhanced CD effect in the terahertz regime has great potential applications in sensing, biomedical imaging, and molecular recognition.展开更多
Giant resonance enhancement is demonstrated to be due to the Fano interference in a grating waveguide composed of gain-assisted silicon slabs. The Fano mode is characterized by its ultra-narrow asymmetric spectrum, di...Giant resonance enhancement is demonstrated to be due to the Fano interference in a grating waveguide composed of gain-assisted silicon slabs. The Fano mode is characterized by its ultra-narrow asymmetric spectrum, different from that of a pure electric or magnetic dipole. The simulation indicates that a sharp Fano-interfered lineshape is responsible for the giant resonance enhancement featuring the small-gain requirements.展开更多
We study surface plasmon lasing based on periodic and bi-periodic groove arrays etched on a silver substrate.It is interesting to find that the bi-periodic structure can open a clear band gap of surface plasmon polari...We study surface plasmon lasing based on periodic and bi-periodic groove arrays etched on a silver substrate.It is interesting to find that the bi-periodic structure can open a clear band gap of surface plasmon polaritons near the first Brillouin zone boundary,and thus it is promising to utilize the band edge modes of surface plasmon polaritons.A low threshold for the surface plasmon lasing effect is demonstrated numerically,owing to the low group velocity of the band edge mode,which provides a feasible way to design surface plasmon lasers.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11174051,11004026,11074034,and 61271057)the National Basic Research Program of China (Grant No.2010CB923401)the Youth Study Plan from Southeast University
文摘Electromagnetically induced transparency (EIT) is obtained in a symmetric U-shaped metamaterial, which is at- tributed to the simultaneously excited dual modes in a single resonator under lateral incidence. A large group index accom- panied with a sharp EIT-like transparency window offers potential applications for slowing down light and sensing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174051,11374049,and 11204139)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20131283)the Fundamental Research Funds for the Central Universities,China
文摘The obvious circular dichroism(CD) and optical activity can be obtained based on the chiral metamaterial due to the plasmon-enhanced effect, which is very attractive for future compact devices with enhanced capabilities of light manipulation. In this paper, we propose a dual-chiral metamaterial composed of bilayer asymmetric split ring resonators(ASRR)that are in mirror-symmetry shape. It is demonstrated that the CD can get enhancement in the terahertz regime. Moreover,the CD can be further improved by modulating the asymmetry of ASRR. The enhanced CD effect in the terahertz regime has great potential applications in sensing, biomedical imaging, and molecular recognition.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904012, 11004026, 11004030, 11074034, and 11174051)the National Basic Research Program of China (Grant No. 2010CB923404)
文摘Giant resonance enhancement is demonstrated to be due to the Fano interference in a grating waveguide composed of gain-assisted silicon slabs. The Fano mode is characterized by its ultra-narrow asymmetric spectrum, different from that of a pure electric or magnetic dipole. The simulation indicates that a sharp Fano-interfered lineshape is responsible for the giant resonance enhancement featuring the small-gain requirements.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11004026,11174051,51271057,51071045 and 11074034the Program for New Century Excellent Talents in University of Ministry of Education of China(No NCET-11-0096)+1 种基金the Natural Science Fund of Jiangsu Province(No BK2012757)the National Basic Research Program of China under Grant No 2010CB923404.
文摘We study surface plasmon lasing based on periodic and bi-periodic groove arrays etched on a silver substrate.It is interesting to find that the bi-periodic structure can open a clear band gap of surface plasmon polaritons near the first Brillouin zone boundary,and thus it is promising to utilize the band edge modes of surface plasmon polaritons.A low threshold for the surface plasmon lasing effect is demonstrated numerically,owing to the low group velocity of the band edge mode,which provides a feasible way to design surface plasmon lasers.