制备了以羰基铁粉为磁性颗粒的硅油基磁流变液,使用Anton Paar Physica MCR 301流变仪测试其流变性能,用Bingham模型对磁流变液的流变性能进行拟合计算。实验表明,Bingham模型可较好地描述磁流变液的流变行为。随着磁场的增大,磁流变液...制备了以羰基铁粉为磁性颗粒的硅油基磁流变液,使用Anton Paar Physica MCR 301流变仪测试其流变性能,用Bingham模型对磁流变液的流变性能进行拟合计算。实验表明,Bingham模型可较好地描述磁流变液的流变行为。随着磁场的增大,磁流变液的剪切应力和粘度显著增大。磁场不变时,随着剪切速率增加,磁流变液剪切应力增加不明显,符合剪切稀化的Bingham模型。通过对数拟合的方法,得出磁流变液剪切应力和电流的关系,在电流较小时,剪切应力呈指数增长,指数值约为1.42,随着电流的增大,剪切应力达到稳定值。展开更多
Shear tests of an electrorheological fluid with pre-applied electric field and compression along the fleld direction are carried out. The results show that pre-compressions can increase the shear yield stress up to te...Shear tests of an electrorheological fluid with pre-applied electric field and compression along the fleld direction are carried out. The results show that pre-compressions can increase the shear yield stress up to ten times. Under the same external electric field strength, a higher compressive strain corresponds to a larger shear yield stress enhancement but with slight current density decrease, which shows that the particle interaction potentials are not increased by compressions but the compression-induced chain aggregation dominates the shear yield stress improvement. This pre-compression technique might be useful for developing high performance flexible ER or magnetorheological couplings.展开更多
文摘制备了以羰基铁粉为磁性颗粒的硅油基磁流变液,使用Anton Paar Physica MCR 301流变仪测试其流变性能,用Bingham模型对磁流变液的流变性能进行拟合计算。实验表明,Bingham模型可较好地描述磁流变液的流变行为。随着磁场的增大,磁流变液的剪切应力和粘度显著增大。磁场不变时,随着剪切速率增加,磁流变液剪切应力增加不明显,符合剪切稀化的Bingham模型。通过对数拟合的方法,得出磁流变液剪切应力和电流的关系,在电流较小时,剪切应力呈指数增长,指数值约为1.42,随着电流的增大,剪切应力达到稳定值。
基金Supported by the National Natural Science Foundation of China with Grant No 50875152, and FANEDD of China under Grant No 200432.
文摘Shear tests of an electrorheological fluid with pre-applied electric field and compression along the fleld direction are carried out. The results show that pre-compressions can increase the shear yield stress up to ten times. Under the same external electric field strength, a higher compressive strain corresponds to a larger shear yield stress enhancement but with slight current density decrease, which shows that the particle interaction potentials are not increased by compressions but the compression-induced chain aggregation dominates the shear yield stress improvement. This pre-compression technique might be useful for developing high performance flexible ER or magnetorheological couplings.