It is very important to obtain an accurate determination of HOMO energy level of organic electroluminescent material.Usually cyclic voltammetry is used to determine it.In this paper,linear scanning voltammetry was ins...It is very important to obtain an accurate determination of HOMO energy level of organic electroluminescent material.Usually cyclic voltammetry is used to determine it.In this paper,linear scanning voltammetry was instead utilized to attain a reault of oxidation potential(or HOMO energy level) due to the film of organic electroluminescent material on the working electrode.Less amount of materials was consumed in this method.The proposed method was faster and more convenient.展开更多
In order to use organic light emitting devices (OLEDs) in display application , it is very important to obtain red emitting light. There are two methods for obtaining red emitting light: doping high fluorescent dyes i...In order to use organic light emitting devices (OLEDs) in display application , it is very important to obtain red emitting light. There are two methods for obtaining red emitting light: doping high fluorescent dyes in host or using metal complexes. Phosphorescent dyes has been used efficiently recently. In this letter, we demonstrate red organic light emitting devices (OLED) with the electroluminescent layers consisting of aluminum tris(8 hydroxyquinoline) (Alq 3) doped with the dye DCM and DCJTB, which the emission color depends on the concentration of DCM and DCJTB. The typical cell structure is as follows: [ITO/ hole transport layer (60nm, TPD) /emitting layer(60nm, Alq 3 + red dopant) /LiF(0.5~2nm) /Al(150nm)]. For DCM doped devices, the maximum luminance of 148000cd/m 2 (chromaticity coordinates: x =0.51, y =0.47) and 5730cd/m 2 (chromaticity coordinates: x =0.58, y =0.42) are measured for DCM concentration of 0.2% and 2% in Alq 3, respectively; and for DCJTB doped devices, 17400 cd/m 2 (chromaticity coordinates : x =0.51, y =0.46) and 3846cd/m 2 (chromaticity coordinates: x =0. 63, y =0. 37) are obtained for DCJTB concentration of 0. 2 % and 2% in Alq 3, respectively.展开更多
文摘It is very important to obtain an accurate determination of HOMO energy level of organic electroluminescent material.Usually cyclic voltammetry is used to determine it.In this paper,linear scanning voltammetry was instead utilized to attain a reault of oxidation potential(or HOMO energy level) due to the film of organic electroluminescent material on the working electrode.Less amount of materials was consumed in this method.The proposed method was faster and more convenient.
文摘In order to use organic light emitting devices (OLEDs) in display application , it is very important to obtain red emitting light. There are two methods for obtaining red emitting light: doping high fluorescent dyes in host or using metal complexes. Phosphorescent dyes has been used efficiently recently. In this letter, we demonstrate red organic light emitting devices (OLED) with the electroluminescent layers consisting of aluminum tris(8 hydroxyquinoline) (Alq 3) doped with the dye DCM and DCJTB, which the emission color depends on the concentration of DCM and DCJTB. The typical cell structure is as follows: [ITO/ hole transport layer (60nm, TPD) /emitting layer(60nm, Alq 3 + red dopant) /LiF(0.5~2nm) /Al(150nm)]. For DCM doped devices, the maximum luminance of 148000cd/m 2 (chromaticity coordinates: x =0.51, y =0.47) and 5730cd/m 2 (chromaticity coordinates: x =0.58, y =0.42) are measured for DCM concentration of 0.2% and 2% in Alq 3, respectively; and for DCJTB doped devices, 17400 cd/m 2 (chromaticity coordinates : x =0.51, y =0.46) and 3846cd/m 2 (chromaticity coordinates: x =0. 63, y =0. 37) are obtained for DCJTB concentration of 0. 2 % and 2% in Alq 3, respectively.