期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于空洞卷积神经网络的医学超声图像去噪 被引量:4
1
作者 邵党国 朱彧麟 +1 位作者 马磊 徐慧 《现代电子技术》 2023年第13期55-61,共7页
散斑严重影响医学超声图像的质量,从而导致临床诊断和图像处理困难。为解决上述问题,提出一种基于空洞卷积神经网络的散斑减小方法。不同于其他的散斑抑制方法,文中通过建立超声图像和散斑图像之间的非线性映射,同时结合跳跃连接使网络... 散斑严重影响医学超声图像的质量,从而导致临床诊断和图像处理困难。为解决上述问题,提出一种基于空洞卷积神经网络的散斑减小方法。不同于其他的散斑抑制方法,文中通过建立超声图像和散斑图像之间的非线性映射,同时结合跳跃连接使网络不会发生梯度爆炸或消失,从而具有较好的反向传播能力。该方法可以通过超声图像预测散斑,再由超声图像与预测的散斑图像相减从而得到干净的超声图像。该方法相较于散斑减少各向异性扩散(SRAD)和细节保持各向异性扩散(DPAD),具有更好的散斑减少和结构保存性能,在对比的量化数据上提升巨大。实验结果表明,该方法在超声医学图像上具有较好的性能和鲁棒性。 展开更多
关键词 医学超声图像 图像去噪 空洞卷积 散斑减少 卷积神经网络 网络模型 跳跃连接
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部