压缩硬度和汁液含量是衡量苹果内部品质的两项重要指标。采用高光谱散射图像技术对苹果压缩硬度和汁液含量进行预测。已有研究表明,高光谱图像含有丰富的波谱信息,光谱值与测量值之间存在严重的非线性关系,简单的线性建模方法不能达到...压缩硬度和汁液含量是衡量苹果内部品质的两项重要指标。采用高光谱散射图像技术对苹果压缩硬度和汁液含量进行预测。已有研究表明,高光谱图像含有丰富的波谱信息,光谱值与测量值之间存在严重的非线性关系,简单的线性建模方法不能达到较高的预测精度。最小二乘支持向量机(Least Squares Support Vector Machine,LS_SVM)作为一种非线性建模工具,已用于解决小样本、非线性和高维数等实际问题。针对580个‘RedDelicious’苹果的高光谱散射图像,提取600~1000nm范围内的波谱信息,采用LS_SVM建立苹果的压缩硬度和汁液含量模型。研究结果表明,LS_SVM压缩硬度预测模型的相关系数为Rp=0.795,预测均方差为RMSEP=10.4KN/m,汁液含量的相关系数为Rp=0.568,预测均方差为RMSEP=1.20cm2,高于传统的偏微分最小二乘(PartialLeastSquares,PLS)建立的压缩硬度,模型精度Rp=0.744,RMSEP=11.4KN/m,汁液含量模型精度Rp=0.539,RMSEP=1.23cm2。展开更多
文摘由于太阳辐射的随机性很大,同时考虑到传统方法建立的单一最小二乘支持向量机(least square support vector machine,LSSVM)模型精度不高,该文提出一种基于经验模态分解(empirical mode decomposition,EMD)局部均值分解(local mean decomposttion,LMD)和与机器学习方法LSSVM联合的逐时太阳辐照度预测模型。先利用信号处理算法EMD及LMD将时间顺序数据分解成一系列相对平稳的分量序列,冉对各子序列分别建立LSSVM预测模型,最后将各子序列预测结果进行叠加得到最终预测值。仿真结果表明,该模型取得比单一模型更好的预测效果,均方根误差精度可提高24.59%。
文摘压缩硬度和汁液含量是衡量苹果内部品质的两项重要指标。采用高光谱散射图像技术对苹果压缩硬度和汁液含量进行预测。已有研究表明,高光谱图像含有丰富的波谱信息,光谱值与测量值之间存在严重的非线性关系,简单的线性建模方法不能达到较高的预测精度。最小二乘支持向量机(Least Squares Support Vector Machine,LS_SVM)作为一种非线性建模工具,已用于解决小样本、非线性和高维数等实际问题。针对580个‘RedDelicious’苹果的高光谱散射图像,提取600~1000nm范围内的波谱信息,采用LS_SVM建立苹果的压缩硬度和汁液含量模型。研究结果表明,LS_SVM压缩硬度预测模型的相关系数为Rp=0.795,预测均方差为RMSEP=10.4KN/m,汁液含量的相关系数为Rp=0.568,预测均方差为RMSEP=1.20cm2,高于传统的偏微分最小二乘(PartialLeastSquares,PLS)建立的压缩硬度,模型精度Rp=0.744,RMSEP=11.4KN/m,汁液含量模型精度Rp=0.539,RMSEP=1.23cm2。