期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
若干非线性偏微分方程的Painleve性质和Backlund变换 被引量:7
1
作者 朱佐农 《东南大学学报(自然科学版)》 EI CAS CSCD 1994年第2期132-136,共5页
若干非线性偏微分方程的Painlevé性质和Backlund变换朱佐农(扬州大学农学院,扬州225001)对于一个非线性偏微分方程,判别其可积性是重要的课题.J.Weiss等人对偏微分方程定义了Painleve性... 若干非线性偏微分方程的Painlevé性质和Backlund变换朱佐农(扬州大学农学院,扬州225001)对于一个非线性偏微分方程,判别其可积性是重要的课题.J.Weiss等人对偏微分方程定义了Painleve性质,从Painleve性质的分析出发可... 展开更多
关键词 偏微分方程 非线性 PAINLEVE性质
在线阅读 下载PDF
广义KdV方程的若干新的精确解
2
作者 朱佐农 《应用数学》 CSCD 北大核心 1994年第1期32-40,共9页
本文利用守恒律方程等价的概念和求精确解的方法,对广义KdV方程求出了若干新解。
关键词 精确解 广义 KDV方程 守恒律方程
在线阅读 下载PDF
Soliton and rogue wave solutions of two-component nonlinear Schr?dinger equation coupled to the Boussinesq equation 被引量:1
3
作者 宋彩芹 肖冬梅 朱佐农 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期28-37,共10页
The nonlinear Schrodinger (NLS) equation and Boussinesq equation are two very important integrable equations. They have widely physical applications. In this paper, we investigate a nonlinear system, which is the tw... The nonlinear Schrodinger (NLS) equation and Boussinesq equation are two very important integrable equations. They have widely physical applications. In this paper, we investigate a nonlinear system, which is the two-component NLS equation coupled to the Boussinesq equation. We obtain the bright-bright, bright-dark, and dark-dark soliton solutions to the nonlinear system. We discuss the collision between two solitons. We observe that the collision of bright-bright soliton is inelastic and two solitons oscillating periodically can happen in the two parallel-traveling bright-bright or bright-dark soliton solution. The general breather and rogue wave solutions are also given. Our results show again that there are more abundant dynamical properties for multi-component nonlinear systems. 展开更多
关键词 multi-component NLS-Boussinesq equation soliton solution rogue wave solution
在线阅读 下载PDF
Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy
4
作者 ZHAO Hai-Qiong ZHU Zuo-Nong ZHANG Jing-Li 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第5期4-7,共4页
Coupled Korteweg-de Vries(KdV)systems have many important physical applications.By considering a 4×4spectral problem,we derive a discrete coupled KdV-type equation hierarchy.Our hierarchy includes the coupled Vol... Coupled Korteweg-de Vries(KdV)systems have many important physical applications.By considering a 4×4spectral problem,we derive a discrete coupled KdV-type equation hierarchy.Our hierarchy includes the coupled Volterra system proposed by Lou et al.(e-print arXiv:0711.0420)as the first member which is a discrete version of the coupled KdV equation.We also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy. 展开更多
关键词 EQUATION HAMILTONIAN LIOUVILLE
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部