Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, a...Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, and f + a(f^(k))^n≠b in D, then F is normal in D.展开更多
基金Supported by the NNSF of China(11071083)the Tianyuan Foundation(11126267)
文摘Let F be a family of functions meromorphic in a domain D, let n ≥ 2 be a positive integer, and let a ≠ 0, b be two finite complex numbers. If, for each f ∈ F, all of whose zeros have multiplicity at least k + 1, and f + a(f^(k))^n≠b in D, then F is normal in D.