期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于蚁群特征选择并行分类集成学习的孪生辐射源个体识别
被引量:
1
1
作者
徐雨芯
顾楚梅
+2 位作者
曹建军
许金勇
魏志虎
《兵工学报》
EI
CAS
CSCD
北大核心
2022年第12期3132-3141,共10页
为提高辐射源个体识别的准确率和可靠性,定义并研究孪生辐射源个体识别问题,提出基于蚁群特征选择并行分类集成学习的孪生辐射源个体识别方法。用皮尔森相关系数法确定不同分类器输出结果的分布矩阵的差异性,以基于蚁群特征选择的并行...
为提高辐射源个体识别的准确率和可靠性,定义并研究孪生辐射源个体识别问题,提出基于蚁群特征选择并行分类集成学习的孪生辐射源个体识别方法。用皮尔森相关系数法确定不同分类器输出结果的分布矩阵的差异性,以基于蚁群特征选择的并行分类器中各子分类器分类准确率最高、差异性最大并使输入特征子集规模最小为目标建立设计模型,结合模型特点设计求解模型的蚁群算法。各子分类器根据其与所有子分类器的差异度和可靠度确定权重,差异度和可靠度越大,所占权重越大,根据不同权重子分类器预测结果的加权和进行最终决策。为验证方法的优越性,在原始电台采集信号、添加10 dB噪声、添加5 dB噪声3组数据下,将新方法和单一分类器、Adaboost算法及随机森林算法进行实验对比。研究结果表明,所提并行分类器设计模型分类准确率分别为88.70%、76.70%、64.80%,提高了特征的利用率和分类的准确性,优于其余3种方法。
展开更多
关键词
特征选择
支持向量机
集成学习
蚁群算法
二分类问题
在线阅读
下载PDF
职称材料
题名
基于蚁群特征选择并行分类集成学习的孪生辐射源个体识别
被引量:
1
1
作者
徐雨芯
顾楚梅
曹建军
许金勇
魏志虎
机构
南京信息工程大学计算机与软件学院
国防科技大学第六十三研究所
出处
《兵工学报》
EI
CAS
CSCD
北大核心
2022年第12期3132-3141,共10页
基金
国家自然科学基金项目(61371196)
中国博士后科学基金特别资助项目(2015M582832)
国家重大科技专项项目(2015ZX01040-201)。
文摘
为提高辐射源个体识别的准确率和可靠性,定义并研究孪生辐射源个体识别问题,提出基于蚁群特征选择并行分类集成学习的孪生辐射源个体识别方法。用皮尔森相关系数法确定不同分类器输出结果的分布矩阵的差异性,以基于蚁群特征选择的并行分类器中各子分类器分类准确率最高、差异性最大并使输入特征子集规模最小为目标建立设计模型,结合模型特点设计求解模型的蚁群算法。各子分类器根据其与所有子分类器的差异度和可靠度确定权重,差异度和可靠度越大,所占权重越大,根据不同权重子分类器预测结果的加权和进行最终决策。为验证方法的优越性,在原始电台采集信号、添加10 dB噪声、添加5 dB噪声3组数据下,将新方法和单一分类器、Adaboost算法及随机森林算法进行实验对比。研究结果表明,所提并行分类器设计模型分类准确率分别为88.70%、76.70%、64.80%,提高了特征的利用率和分类的准确性,优于其余3种方法。
关键词
特征选择
支持向量机
集成学习
蚁群算法
二分类问题
Keywords
feature selection
support vector machine
ensemble learning
ant colony algorithm
binary classification
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于蚁群特征选择并行分类集成学习的孪生辐射源个体识别
徐雨芯
顾楚梅
曹建军
许金勇
魏志虎
《兵工学报》
EI
CAS
CSCD
北大核心
2022
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部