Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixt...Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixteen signalized intersections in the Nanjing area in China. The risk-taking behaviors of the drivers of taxis and private cars were compared. The results suggest that 19.9% of taxi drivers have committed at least one of the identified risky behaviors, which is 2.37 times as high as that of the drivers of private cars(8.4%). The traffic conflicts technique was used to estimate the safety effects of taxis and private cars. The overall conflict rate for taxis is 21.4% higher than that for private cars, implying that taxis are more likely to be involved in conflicts. Almost all of the identified traffic conflicts can be attributed to certain levels of risk-taking behaviors committed by either taxi drivers or the drivers of private cars, and taxi drivers are more likely to be at fault in a conflict. Failure to yield to right-of-way and improper lane change is the leading causes of the conflicts in which taxis are at-fault. The research team further studied the effects of taxis on the queue discharge characteristics at signalized intersections. The results show that the presence of taxis significantly reduces both start-up lost time and saturation headways. The effects of taxis on saturation flow rates are dependent on the proportion of taxis in the discharge flow, and the saturation flow rates increase with the increase in the proportion of taxis. The adjustment factors for various proportions of taxis for different turning movements are then calculated to quantitatively evaluate the effects of taxis on the capacity of signalized intersections.展开更多
A control strategy of variable speed limits(VSL)was developed to reduce the travel time at freeway recurrent bottleneck areas.The proposed control strategy particularly focused on preventing the capacity drop and incr...A control strategy of variable speed limits(VSL)was developed to reduce the travel time at freeway recurrent bottleneck areas.The proposed control strategy particularly focused on preventing the capacity drop and increasing the discharge flow.A cell transmission model(CTM)was developed to evaluate the effects of the proposed VSL control strategy on the traffic operations.The results show that the total travel time is reduced by 25.5% and the delay is reduced by 56.1%.The average travel speed is increased by 34.3% and the queue length is reduced by 31.0%.The traffic operation is improved by the proposed VSL control strategy.The way to use the proposed VSL control strategy in different types of freeway bottlenecks was also discussed by considering different traffic flow characteristics.It is concluded that the VSL control strategy is effective for merge bottlenecks but is less effective for diverge bottlenecks.展开更多
基金Projects(51322810,50908050)supported by the National Natural Science Foundation of China
文摘Comparative analyses were conducted to compare the effects of the behavioral characteristics of the drivers of taxis and private cars on the capacity and safety of signalized intersections. Data were collected at sixteen signalized intersections in the Nanjing area in China. The risk-taking behaviors of the drivers of taxis and private cars were compared. The results suggest that 19.9% of taxi drivers have committed at least one of the identified risky behaviors, which is 2.37 times as high as that of the drivers of private cars(8.4%). The traffic conflicts technique was used to estimate the safety effects of taxis and private cars. The overall conflict rate for taxis is 21.4% higher than that for private cars, implying that taxis are more likely to be involved in conflicts. Almost all of the identified traffic conflicts can be attributed to certain levels of risk-taking behaviors committed by either taxi drivers or the drivers of private cars, and taxi drivers are more likely to be at fault in a conflict. Failure to yield to right-of-way and improper lane change is the leading causes of the conflicts in which taxis are at-fault. The research team further studied the effects of taxis on the queue discharge characteristics at signalized intersections. The results show that the presence of taxis significantly reduces both start-up lost time and saturation headways. The effects of taxis on saturation flow rates are dependent on the proportion of taxis in the discharge flow, and the saturation flow rates increase with the increase in the proportion of taxis. The adjustment factors for various proportions of taxis for different turning movements are then calculated to quantitatively evaluate the effects of taxis on the capacity of signalized intersections.
基金Project(2012CB725400)supported by the National Key Basic Research Program of ChinaProject(2011AA110303)supported by the National High Technology Research and Development Program of ChinaProject(YBPY1211)supported by the Scientific Research Foundation of the Graduate School of Southeast University,China
文摘A control strategy of variable speed limits(VSL)was developed to reduce the travel time at freeway recurrent bottleneck areas.The proposed control strategy particularly focused on preventing the capacity drop and increasing the discharge flow.A cell transmission model(CTM)was developed to evaluate the effects of the proposed VSL control strategy on the traffic operations.The results show that the total travel time is reduced by 25.5% and the delay is reduced by 56.1%.The average travel speed is increased by 34.3% and the queue length is reduced by 31.0%.The traffic operation is improved by the proposed VSL control strategy.The way to use the proposed VSL control strategy in different types of freeway bottlenecks was also discussed by considering different traffic flow characteristics.It is concluded that the VSL control strategy is effective for merge bottlenecks but is less effective for diverge bottlenecks.