针对旋转机械复合故障振动信号的非平稳特征,开展一种基于局部均值分解(local mean decomposition,LMD)的旋转机械复合故障诊断方法研究。该方法首先通过局部均值分解方法将振动信号分解为若干个PF分量(product function)和一个残余分...针对旋转机械复合故障振动信号的非平稳特征,开展一种基于局部均值分解(local mean decomposition,LMD)的旋转机械复合故障诊断方法研究。该方法首先通过局部均值分解方法将振动信号分解为若干个PF分量(product function)和一个残余分量之和,然后通过计算各PF分量与原始复合故障信号的相关系数来确定包含故障特征信息的主要成分;最后针对主要成分中的低频分量进行频谱分析从而提取轴的故障特征。针对主要成分中的高频分量采用包络谱分析提取调制故障特征,即提取轴承故障特征。对齿轮箱的轴承、轴复合故障振动信号的分析结果表明了该方法的有效性和可行性。展开更多
提出一种基于局部均值模式分解(local mean decomposition,简称LMD)的近似熵和隐Markov模型(hiddenMarkov model,简称HMM)的转子系统故障识别新方法.利用LMD良好的局域化特性和近似熵来量化故障特征,再与HMM结合进行故障类型识别.用LMD...提出一种基于局部均值模式分解(local mean decomposition,简称LMD)的近似熵和隐Markov模型(hiddenMarkov model,简称HMM)的转子系统故障识别新方法.利用LMD良好的局域化特性和近似熵来量化故障特征,再与HMM结合进行故障类型识别.用LMD方法将转子信号分解成若干个瞬时频率具有物理意义的乘积函数(product function)PF分量之和,选取转子信号的前3个PF分量的近似熵值作为信号的特征向量,将构造出的特征向量输入到HMM分类器中进行故障类型识别.仿真表明,该方法能有效地提取故障特征,结合HMM的动态统计特性可智能识别转子故障类型.展开更多
文摘针对旋转机械复合故障振动信号的非平稳特征,开展一种基于局部均值分解(local mean decomposition,LMD)的旋转机械复合故障诊断方法研究。该方法首先通过局部均值分解方法将振动信号分解为若干个PF分量(product function)和一个残余分量之和,然后通过计算各PF分量与原始复合故障信号的相关系数来确定包含故障特征信息的主要成分;最后针对主要成分中的低频分量进行频谱分析从而提取轴的故障特征。针对主要成分中的高频分量采用包络谱分析提取调制故障特征,即提取轴承故障特征。对齿轮箱的轴承、轴复合故障振动信号的分析结果表明了该方法的有效性和可行性。
文摘提出一种基于局部均值模式分解(local mean decomposition,简称LMD)的近似熵和隐Markov模型(hiddenMarkov model,简称HMM)的转子系统故障识别新方法.利用LMD良好的局域化特性和近似熵来量化故障特征,再与HMM结合进行故障类型识别.用LMD方法将转子信号分解成若干个瞬时频率具有物理意义的乘积函数(product function)PF分量之和,选取转子信号的前3个PF分量的近似熵值作为信号的特征向量,将构造出的特征向量输入到HMM分类器中进行故障类型识别.仿真表明,该方法能有效地提取故障特征,结合HMM的动态统计特性可智能识别转子故障类型.