喷口结构形式对喷嘴雾化性能有重要影响,本文采用计算流体动力学方法研究了不同雾化气体压强(P0)下喷口结构对喷射气体流场及导流管顶端静压强(Pt)的影响规律,建立了紧耦合型、环缝HPGA(High Pressure Gas Atomizer)型和Laval环孔型三...喷口结构形式对喷嘴雾化性能有重要影响,本文采用计算流体动力学方法研究了不同雾化气体压强(P0)下喷口结构对喷射气体流场及导流管顶端静压强(Pt)的影响规律,建立了紧耦合型、环缝HPGA(High Pressure Gas Atomizer)型和Laval环孔型三种喷口结构的喷射模型,并用Fluent软件进行了模拟计算.研究结果表明:三种喷嘴结构的抽吸压强及导流管顶端静压强径向梯度随雾化压强的变化表现出不同的变化趋势;Laval环孔型喷嘴在雾化压强较低时雾化性能最佳,HPGA型喷嘴在高压时雾化性能最佳;数值计算结果与试验观测值吻合较好.展开更多
研究使用一种含有金属相变材料(Phase Change material,PCM)的温控组件(Thermal Control Component,TCC)对航天器上的有效载荷进行温度控制。通过对载荷的温控需求分析,设计并制备了以Ga-Sn合金为PCM的TCC,并通过地面模拟实验对TCC的温...研究使用一种含有金属相变材料(Phase Change material,PCM)的温控组件(Thermal Control Component,TCC)对航天器上的有效载荷进行温度控制。通过对载荷的温控需求分析,设计并制备了以Ga-Sn合金为PCM的TCC,并通过地面模拟实验对TCC的温控性能进行测试。实验结果表明这种含有Ga-Sn合金的TCC满足载荷的温控需求。最后在仿真软件中建立了TCC的相变传热仿真模型用于预测TCC的温控性能。结果表明:仿真模型计算所得结果与实验结果基本一致,可用于预测TCC的温控性能。展开更多
文摘喷口结构形式对喷嘴雾化性能有重要影响,本文采用计算流体动力学方法研究了不同雾化气体压强(P0)下喷口结构对喷射气体流场及导流管顶端静压强(Pt)的影响规律,建立了紧耦合型、环缝HPGA(High Pressure Gas Atomizer)型和Laval环孔型三种喷口结构的喷射模型,并用Fluent软件进行了模拟计算.研究结果表明:三种喷嘴结构的抽吸压强及导流管顶端静压强径向梯度随雾化压强的变化表现出不同的变化趋势;Laval环孔型喷嘴在雾化压强较低时雾化性能最佳,HPGA型喷嘴在高压时雾化性能最佳;数值计算结果与试验观测值吻合较好.
文摘研究使用一种含有金属相变材料(Phase Change material,PCM)的温控组件(Thermal Control Component,TCC)对航天器上的有效载荷进行温度控制。通过对载荷的温控需求分析,设计并制备了以Ga-Sn合金为PCM的TCC,并通过地面模拟实验对TCC的温控性能进行测试。实验结果表明这种含有Ga-Sn合金的TCC满足载荷的温控需求。最后在仿真软件中建立了TCC的相变传热仿真模型用于预测TCC的温控性能。结果表明:仿真模型计算所得结果与实验结果基本一致,可用于预测TCC的温控性能。