期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合CNN-Transformer特征交互的红外与可见光图像融合方法
1
作者 张德银 张裕尧 +1 位作者 李俊佟 吴章辉 《红外技术》 北大核心 2025年第7期813-822,共10页
针对CNN与Transformer提取的特征之间交互作用未充分挖掘而导致的融合图像易产生红外特征分布不均匀、轮廓不清晰以及重要背景信息丢失等问题,本文提出了一种新的结合CNN-Transformer特征交互的红外与可见光图像融合网络。首先,新融合... 针对CNN与Transformer提取的特征之间交互作用未充分挖掘而导致的融合图像易产生红外特征分布不均匀、轮廓不清晰以及重要背景信息丢失等问题,本文提出了一种新的结合CNN-Transformer特征交互的红外与可见光图像融合网络。首先,新融合网络设计了新的空间通道混合注意力机制以提升全局及局部特征的提取效率并得到混合特征块;其次,利用CNN-Transformer的特征交互获取融合混合特征块,并构建多尺度重构网络以实现图像特征重构输出;最后,使用TNO数据集将新融合网络与其它9种融合网络进行对比图像融合实验。实验结果表明,新融合网络获得的融合图像在视觉感知方面表现优异,既突出了红外特征和物体轮廓,又保留了丰富的背景纹理细节;网络在EN、SD、AG、SF、SCD以及VIF指标上相较于现有融合网络平均提高约64.73%、8.17%、69.05%、66.34%、15.39%和25.66%。消融实验证明了新模型的有效性。 展开更多
关键词 CNN-Transformer特征交互 全局特征 混合注意力 图像融合 局部特征
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部