期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于时空认知膨胀卷积网络与多源影响因素的PM_(2.5)细粒度预测模型 被引量:2
1
作者 刘希亮 赵俊杰 +3 位作者 张羽民 林绍福 李建强 梅强 《北京工业大学学报》 CAS CSCD 北大核心 2024年第3期333-347,共15页
为实现精确化、细粒度的PM_(2.5)浓度预测,提出了基于时空认知膨胀卷积网络(spatial-temporal cognitive dilated convolution network,ST-C-DCN)的PM_(2.5)浓度预测模型ST-C-DCN。该模型将时空因素、气象因素运用于PM_(2.5)浓度预测,... 为实现精确化、细粒度的PM_(2.5)浓度预测,提出了基于时空认知膨胀卷积网络(spatial-temporal cognitive dilated convolution network,ST-C-DCN)的PM_(2.5)浓度预测模型ST-C-DCN。该模型将时空因素、气象因素运用于PM_(2.5)浓度预测,基于因果卷积网络提取时空特征,并采用时空注意力机制优化了时空特征的提取。基于海口市空气污染数据的实验测试表明:对于单个监测站,基线模型相比,ST-C-DCN的均方根误差(root mean square error,RMSE)平均下降24.7%,平均绝对误差(mean absolute error,MAE)平均下降9.93%,拟合优度(R-squared,R^(2))平均上升3.35%。对于全部监测站点的预测,ST-C-DCN在win-tie-loss(包括MSE、RMSE、MAE、R^(2))实验中,均获得了最多的获胜次数,分别为68,68、63和64。通过不同数据抽样条件下的Friedman检验,证明了ST-C-DCN对比基准有显著的性能提升。ST-C-DCN为细粒度PM_(2.5)预测提供了一个具有潜力的方向。 展开更多
关键词 PM_(2.5)预测 多源影响因素 膨胀卷积网络 贝叶斯优化 Shapley分析 Friedman检验
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部