We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon senso...We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.展开更多
报道了激射波长为2.1μm的Ga In Sb/Al Ga As Sb双量子阱激光器。通过优化外延结构设计和欧姆接触,无镀膜的宽条激光器达到了9.8%的峰值功率转换效率,这比原来的值提高了1.5倍,室温下得到了615 m W的连续激射功率输出和1.5 W的脉冲激射...报道了激射波长为2.1μm的Ga In Sb/Al Ga As Sb双量子阱激光器。通过优化外延结构设计和欧姆接触,无镀膜的宽条激光器达到了9.8%的峰值功率转换效率,这比原来的值提高了1.5倍,室温下得到了615 m W的连续激射功率输出和1.5 W的脉冲激射功率输出。这些激光器的阈值电流密度低至126 A/cm2,斜率效率高达0.3 W/A。通过测试不同腔长的激光器,测得内损耗和内量子效率分别为6 cm-1和75.5%,均比原有器件有很大提升。激光器在连续工作3 000 h后,功率没有明显下降。展开更多
We numerically investigate the electromagnetic properties of tellurium dielectric resonator metamaterial at the infrared wavelengths. The transmission spectra, effective permittivity and permeability of the periodic t...We numerically investigate the electromagnetic properties of tellurium dielectric resonator metamaterial at the infrared wavelengths. The transmission spectra, effective permittivity and permeability of the periodic tellurium metamaterial structure are investigated in detail. The linewidth of the structure in the direction of magnetic field W x has effects on the position and strength of the electric resonance and magnetic resonance modes. With appropriately optimizing the geometric dimensions of the designed structure, the proposed tellurium metamaterial structure can provide electric resonance mode and high order magnetic resonance mode in the same frequency band. This would be helpful to analyze and design low-loss negative refraction index metamaterials at the infrared wavelengths.展开更多
Room-temperature operation of a GaSh based laterally coupled distributed feedback quantum-well laser diode emitting at 2 μm is demonstrated. The device exhibits single longitudinal mode characteristic as a result of ...Room-temperature operation of a GaSh based laterally coupled distributed feedback quantum-well laser diode emitting at 2 μm is demonstrated. The device exhibits single longitudinal mode characteristic as a result of the first order Cr-Bragg gratings alongside the narrow ridge waveguide. We design the laser structure to obtain a critical coupling condition corresponding to a coupling coefficient of 12cm-1. For a I-mm-iong uncoated laser diode with a 3-μm-wide stripe, a single mode output spectrum with side mode suppression ratio as high as 28.5 dB is achieved, and the maximum single mode continuous-wave output power is about 11 mW at room temperature.展开更多
基金Project supported by the National Key Research Program of China(Grant No.2011ZX01015-001)
文摘We investigate the sensitivity and figure of merit (FOM) of a localized surface plasmon (LSP) sensor with gold nanograting on the top of planar metallic film. The sensitivity of the localized surface plasmon sensor is 317 nm/RIU, and the FOM is predicted to be above 8, which is very high for a localized surface plasmon sensor. By employing the rigorous coupled-wave analysis (RCWA) method, we analyze the distribution of the magnetic field and find that the sensing property of our proposed system is attributed to the interactions between the localized surface plasmon around the gold nanostrips and the surface plasmon polarition on the surface of the gold planar metallic film. These findings are important for developing high FOM localized surface plasmon sensors.
文摘报道了激射波长为2.1μm的Ga In Sb/Al Ga As Sb双量子阱激光器。通过优化外延结构设计和欧姆接触,无镀膜的宽条激光器达到了9.8%的峰值功率转换效率,这比原来的值提高了1.5倍,室温下得到了615 m W的连续激射功率输出和1.5 W的脉冲激射功率输出。这些激光器的阈值电流密度低至126 A/cm2,斜率效率高达0.3 W/A。通过测试不同腔长的激光器,测得内损耗和内量子效率分别为6 cm-1和75.5%,均比原有器件有很大提升。激光器在连续工作3 000 h后,功率没有明显下降。
基金Project supported by the National Basic Research Program of China(Grant Nos.2011CBA00608,2012CB619203,2015CB351902,and 2015CB932402)the National Key Research Program of China(Grant No.2011ZX01015-001)the National Natural Science Foundation of China(Grant Nos.61036010,61177070,11374295,and U1431231)
文摘We numerically investigate the electromagnetic properties of tellurium dielectric resonator metamaterial at the infrared wavelengths. The transmission spectra, effective permittivity and permeability of the periodic tellurium metamaterial structure are investigated in detail. The linewidth of the structure in the direction of magnetic field W x has effects on the position and strength of the electric resonance and magnetic resonance modes. With appropriately optimizing the geometric dimensions of the designed structure, the proposed tellurium metamaterial structure can provide electric resonance mode and high order magnetic resonance mode in the same frequency band. This would be helpful to analyze and design low-loss negative refraction index metamaterials at the infrared wavelengths.
基金Supported by the National Basic Research Program of China under Grant No 2011CBA00608the Beijing Nature Science Foundation of China under Grant No 4112058
文摘Room-temperature operation of a GaSh based laterally coupled distributed feedback quantum-well laser diode emitting at 2 μm is demonstrated. The device exhibits single longitudinal mode characteristic as a result of the first order Cr-Bragg gratings alongside the narrow ridge waveguide. We design the laser structure to obtain a critical coupling condition corresponding to a coupling coefficient of 12cm-1. For a I-mm-iong uncoated laser diode with a 3-μm-wide stripe, a single mode output spectrum with side mode suppression ratio as high as 28.5 dB is achieved, and the maximum single mode continuous-wave output power is about 11 mW at room temperature.