In this paper we report the leakage current, ferroelectric and piezoelectric properties of the YFe O3 film with hexagonal structure, which was fabricated on Si(111) substrate by a simple sol-gel method. The leakage ...In this paper we report the leakage current, ferroelectric and piezoelectric properties of the YFe O3 film with hexagonal structure, which was fabricated on Si(111) substrate by a simple sol-gel method. The leakage current test shows good characteristics as the leakage current density is 5.4 × 10^-6A/cm^2 under 5 V. The dominant leakage mechanism is found to be an Ohmic behavior at low electric field and space-charge-limited conduction at high electric field region. The P–E measurements show ferroelectric hysteresis loops with small remnant polarization and coercive field at room temperature.The distinct and switchable domain structures on the nanometer scale are observed by piezoresponse force microscopy,which testifies to the ferroelectricity of the YFe O3 film further.展开更多
Orthorhombic YFeO_3 thin film was prepared on La_(0.67)Sr_(0.33)MnO_3/LaAlO_3 substrate by a sol-gel spin-coating method. The structures of the YFeO_3/La_(0.67)Sr_(0.33)MnO_3/LaAlO_3(YFO/LSMO/LAO) sample were detected...Orthorhombic YFeO_3 thin film was prepared on La_(0.67)Sr_(0.33)MnO_3/LaAlO_3 substrate by a sol-gel spin-coating method. The structures of the YFeO_3/La_(0.67)Sr_(0.33)MnO_3/LaAlO_3(YFO/LSMO/LAO) sample were detected by x-ray diffraction pattern, Raman spectrometer, scanning electron microscopy, and atomic force microscope. The local ferroelectric polarization switching properties of the orthorhombic YFO film were confirmed by piezoresponse force microscopy(PFM) for the first time. The results show that the YFO film deposited on LSMO/LAO possesses orthorhombic structure,with ultra-fine crystal grains and flat surface. The leakage current of the YFO film is 8.39 × 10^(-4) A·cm^(-2) at 2 V,with its leakage mechanism found to be an ohmic behavior. PFM measurements indicate that the YFO film reveals weak ferroelectricity at room temperature and the local switching behavior of ferroelectric domains has been identified. By local poling experiment, polarization reversal in the orthorhombic YFO film at room temperature was further observed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61471301,61078057,51202195,and 511172183)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20126102110045)the NPU Foundation for Fundamental Research(Grant Nos.JC201155,JC201271,and JC20120246)
文摘In this paper we report the leakage current, ferroelectric and piezoelectric properties of the YFe O3 film with hexagonal structure, which was fabricated on Si(111) substrate by a simple sol-gel method. The leakage current test shows good characteristics as the leakage current density is 5.4 × 10^-6A/cm^2 under 5 V. The dominant leakage mechanism is found to be an Ohmic behavior at low electric field and space-charge-limited conduction at high electric field region. The P–E measurements show ferroelectric hysteresis loops with small remnant polarization and coercive field at room temperature.The distinct and switchable domain structures on the nanometer scale are observed by piezoresponse force microscopy,which testifies to the ferroelectricity of the YFe O3 film further.
基金supported by the National Natural Science Foundation of China(Grant No.61471301)Natural Science Basic Research Program of Shaanxi,China(Grant No.2017JQ5083)PhD Research Startup Foundation of Xi’an University of Science and Technology,China(Grant No.2017QDJ044)
文摘Orthorhombic YFeO_3 thin film was prepared on La_(0.67)Sr_(0.33)MnO_3/LaAlO_3 substrate by a sol-gel spin-coating method. The structures of the YFeO_3/La_(0.67)Sr_(0.33)MnO_3/LaAlO_3(YFO/LSMO/LAO) sample were detected by x-ray diffraction pattern, Raman spectrometer, scanning electron microscopy, and atomic force microscope. The local ferroelectric polarization switching properties of the orthorhombic YFO film were confirmed by piezoresponse force microscopy(PFM) for the first time. The results show that the YFO film deposited on LSMO/LAO possesses orthorhombic structure,with ultra-fine crystal grains and flat surface. The leakage current of the YFO film is 8.39 × 10^(-4) A·cm^(-2) at 2 V,with its leakage mechanism found to be an ohmic behavior. PFM measurements indicate that the YFO film reveals weak ferroelectricity at room temperature and the local switching behavior of ferroelectric domains has been identified. By local poling experiment, polarization reversal in the orthorhombic YFO film at room temperature was further observed.