全聚焦算法依靠信号的幅度信息进行延迟叠加(delay and sum,DAS)成像,实际应用中信号并非总能满足相干叠加这一前提,而非相干信号的叠加导致噪声和伪影。文章提出一种循环相干因子(circular coherence factor,CCF)加权的延迟乘和(delay ...全聚焦算法依靠信号的幅度信息进行延迟叠加(delay and sum,DAS)成像,实际应用中信号并非总能满足相干叠加这一前提,而非相干信号的叠加导致噪声和伪影。文章提出一种循环相干因子(circular coherence factor,CCF)加权的延迟乘和(delay multiply and sum,DMAS)CCF-DMAS优化算法,实现薄板中缺陷的兰姆波全聚焦成像。该方法考虑接收阵元间的空间相干性,对接收信号进行相乘耦合,利用数据中的相位信息计算相干因子实现自适应加权,以扩大相干和非相干信号间的差异,从而达到缩窄主瓣,减少旁瓣,提高成像分辨率的效果。建立超声阵列发射、接收实验系统,通过楔块耦合,在含通孔缺陷的锆合金薄板上激发S_(0)模态兰姆波,捕获全矩阵数据;通过CCF-DMAS算法对采集的数据相位加权,生成新的频率分量;利用带通滤波保留二次谐波分量进行全聚焦成像。实验结果表明:与DAS和DMAS全聚焦成像算法相比,CCF-DMAS全聚焦优化算法能够有效抑制噪声和伪影,信噪比提高约39%和22%,阵列性能指数提高约86%和69%,为薄板无损检测的后处理提供了一种有效的改进方案。展开更多
文摘全聚焦算法依靠信号的幅度信息进行延迟叠加(delay and sum,DAS)成像,实际应用中信号并非总能满足相干叠加这一前提,而非相干信号的叠加导致噪声和伪影。文章提出一种循环相干因子(circular coherence factor,CCF)加权的延迟乘和(delay multiply and sum,DMAS)CCF-DMAS优化算法,实现薄板中缺陷的兰姆波全聚焦成像。该方法考虑接收阵元间的空间相干性,对接收信号进行相乘耦合,利用数据中的相位信息计算相干因子实现自适应加权,以扩大相干和非相干信号间的差异,从而达到缩窄主瓣,减少旁瓣,提高成像分辨率的效果。建立超声阵列发射、接收实验系统,通过楔块耦合,在含通孔缺陷的锆合金薄板上激发S_(0)模态兰姆波,捕获全矩阵数据;通过CCF-DMAS算法对采集的数据相位加权,生成新的频率分量;利用带通滤波保留二次谐波分量进行全聚焦成像。实验结果表明:与DAS和DMAS全聚焦成像算法相比,CCF-DMAS全聚焦优化算法能够有效抑制噪声和伪影,信噪比提高约39%和22%,阵列性能指数提高约86%和69%,为薄板无损检测的后处理提供了一种有效的改进方案。