旨在揭示含双频周期激励的不同尺度Filippov系统的非光滑簇发振荡模式及分岔机制.以Duffing和Van der Pol耦合振子作为动力系统模型,引入周期变化的双频激励项,当两激励频率与固有频率存在量级差时,将两周期激励项表示为可以作为一慢变...旨在揭示含双频周期激励的不同尺度Filippov系统的非光滑簇发振荡模式及分岔机制.以Duffing和Van der Pol耦合振子作为动力系统模型,引入周期变化的双频激励项,当两激励频率与固有频率存在量级差时,将两周期激励项表示为可以作为一慢变参数的单一周期激励项的代数表达式,给出了当保持外部激励频率不变,改变参数激励频率的情况下,快子系统随慢变参数变化的平衡曲线及因系统出现的fold分岔或Hopf分岔导致的系统分岔行为的演化机制.结合转换相图和由Hopf分岔产生稳定极限环的演化过程,得到了由慢变参数确定的同宿分岔、多滑分岔的临界情形及因慢变参数改变而出现的混合振荡模式,并详细阐述了系统的簇发振荡机制和非光滑动力学行为特性.通过对比两种不同情形下的平衡曲线及分岔图,指出虽然系统有相似的平衡曲线结构,却因参数激励频率取值的不同,致使平衡曲线发生了更多的曲折,对应的极值点的个数也有所改变,并通过数值模拟,对结果进行了验证.展开更多
We present some singular wave solutions such as multi-peaked periodic waves, multi-peaked kink waves, multi-peaked peakons as well as kink-compactons, associated with singular curves of generalized KdV equation and mo...We present some singular wave solutions such as multi-peaked periodic waves, multi-peaked kink waves, multi-peaked peakons as well as kink-compactons, associated with singular curves of generalized KdV equation and modified KdV equation. When a trajectory intersects with the singular curve, it may be divided into segments. Different combinations of these segments may lead to different singular wave solutions, while at the intersection points, peaks on the waves can be observed.展开更多
Upon investigation of the parameter influence on the structure of WBK equation, transition boundaries are derived. All possible bounded waves as well as the existence conditions are obtained. The evolution of waves wi...Upon investigation of the parameter influence on the structure of WBK equation, transition boundaries are derived. All possible bounded waves as well as the existence conditions are obtained. The evolution of waves with variation of the parameters is discussed in detail, which reveals the bifurcation mechanism between different wave patterns.展开更多
By introducing a new type of solutions, called the multiple-mode wave solutions which can be expressed in nonlinear superposition of single-mode waves with different speeds, we investigate the two-mode wave solutions ...By introducing a new type of solutions, called the multiple-mode wave solutions which can be expressed in nonlinear superposition of single-mode waves with different speeds, we investigate the two-mode wave solutions in Degasperis-Procesi equation and two cases are derived. The explicit expressions for the two-mode waves as well as the existence conditions are presented. It is shown that the two-mode waves may be the nonlinear combinations of many types of single-mode waves, such as periodic waves, solJtons, compactons, etc., and more complicated multiple-mode waves can be obtained if higher order or more single-mode waves are taken into consideration. It is pointed out that the two-mode wave solutions can be employed to display the typical mechanism of the interactions between different single-mode waves.展开更多
Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifu...Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamic behaviors. Due to the existence of non-smooth factors, different types of bifurcations are presented in spiking states, such as grazing-sliding bifurcation and across-sliding bifurcation. In addition, the non-smooth fold bifurcation may lead to the appearance of a special quiescent state in the interface as well as a non-smooth homoclinic bifurcation phenomenon. Due to these bifurcation behaviors, a special transition between spiking and quiescent state can also occur.展开更多
文摘旨在揭示含双频周期激励的不同尺度Filippov系统的非光滑簇发振荡模式及分岔机制.以Duffing和Van der Pol耦合振子作为动力系统模型,引入周期变化的双频激励项,当两激励频率与固有频率存在量级差时,将两周期激励项表示为可以作为一慢变参数的单一周期激励项的代数表达式,给出了当保持外部激励频率不变,改变参数激励频率的情况下,快子系统随慢变参数变化的平衡曲线及因系统出现的fold分岔或Hopf分岔导致的系统分岔行为的演化机制.结合转换相图和由Hopf分岔产生稳定极限环的演化过程,得到了由慢变参数确定的同宿分岔、多滑分岔的临界情形及因慢变参数改变而出现的混合振荡模式,并详细阐述了系统的簇发振荡机制和非光滑动力学行为特性.通过对比两种不同情形下的平衡曲线及分岔图,指出虽然系统有相似的平衡曲线结构,却因参数激励频率取值的不同,致使平衡曲线发生了更多的曲折,对应的极值点的个数也有所改变,并通过数值模拟,对结果进行了验证.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10872080 and 10972091.
文摘We present some singular wave solutions such as multi-peaked periodic waves, multi-peaked kink waves, multi-peaked peakons as well as kink-compactons, associated with singular curves of generalized KdV equation and modified KdV equation. When a trajectory intersects with the singular curve, it may be divided into segments. Different combinations of these segments may lead to different singular wave solutions, while at the intersection points, peaks on the waves can be observed.
基金Supported by the National Natural Science Foundation of China under Grant No 10602020.
文摘Upon investigation of the parameter influence on the structure of WBK equation, transition boundaries are derived. All possible bounded waves as well as the existence conditions are obtained. The evolution of waves with variation of the parameters is discussed in detail, which reveals the bifurcation mechanism between different wave patterns.
基金Supported by the National Natural Science Foundation of China under Grant No 10602020 and 20476041.
文摘By introducing a new type of solutions, called the multiple-mode wave solutions which can be expressed in nonlinear superposition of single-mode waves with different speeds, we investigate the two-mode wave solutions in Degasperis-Procesi equation and two cases are derived. The explicit expressions for the two-mode waves as well as the existence conditions are presented. It is shown that the two-mode waves may be the nonlinear combinations of many types of single-mode waves, such as periodic waves, solJtons, compactons, etc., and more complicated multiple-mode waves can be obtained if higher order or more single-mode waves are taken into consideration. It is pointed out that the two-mode wave solutions can be employed to display the typical mechanism of the interactions between different single-mode waves.
基金Project supported by the National Natural Science Foundation of China(Grant No.11472116)the Key Program of the National Natural Science Foundation of China(Grant No.11632008)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX17 1784)
文摘Based on the chaotic geomagnetic field model, a non-smooth factor is introduced to explore complex dynamical behaviors of a system with multiple time scales. By regarding the whole excitation term as a parameter, bifurcation sets are derived, which divide the generalized parameter space into several regions corresponding to different kinds of dynamic behaviors. Due to the existence of non-smooth factors, different types of bifurcations are presented in spiking states, such as grazing-sliding bifurcation and across-sliding bifurcation. In addition, the non-smooth fold bifurcation may lead to the appearance of a special quiescent state in the interface as well as a non-smooth homoclinic bifurcation phenomenon. Due to these bifurcation behaviors, a special transition between spiking and quiescent state can also occur.