脑电信号获取过程中,工频噪声干扰现象往往会使所获取的信息产生多种多形态瞬时结构波形,这种现象影响到DIVA(Directions Into Velocities of Articulators)模型对语音的正常处理.为此,本文提出了一种面向特征提取的脑电信号结构自适应...脑电信号获取过程中,工频噪声干扰现象往往会使所获取的信息产生多种多形态瞬时结构波形,这种现象影响到DIVA(Directions Into Velocities of Articulators)模型对语音的正常处理.为此,本文提出了一种面向特征提取的脑电信号结构自适应稀疏分解模型,并在此基础上,通过采用匹配追踪算法求解最佳原子、使用过完备原子库中原子表示原始脑电信号等方法,实现了信号去噪的目的,效果好于传统的小波变换去噪方法.仿真实验表明,本文提出的方法提高了DIVA模型语音发音的精度.展开更多
语音生成与获取是一个涉及大脑诸多部位的复杂认知过程,这个过程包括一种从依照句法和语义组织句子或短语的表述一直延伸到音素产生的分层结构。DIVA(directions into velocities of artculators)模型,是一种关于语音生成与获取后描述...语音生成与获取是一个涉及大脑诸多部位的复杂认知过程,这个过程包括一种从依照句法和语义组织句子或短语的表述一直延伸到音素产生的分层结构。DIVA(directions into velocities of artculators)模型,是一种关于语音生成与获取后描述相关处理过程的数学模型,也是一种为了生成单词、音节或者音素,用来控制模拟声道运动的自适应网络模型。在当今真正具有生物学意义的语音生成和获取的神经网络模型中,DIVA模型的定义和测试相对而言是最彻底的,并且是唯一一种应用伪逆控制方案的模型。文中引入基于零空间的伪逆算法,对DIVA模型中的伪逆控制求解算法进行改进,从而更加精确地获得了DIVA模型的相应参数,提高了DIVA模型的鲁棒性。展开更多
文摘脑电信号获取过程中,工频噪声干扰现象往往会使所获取的信息产生多种多形态瞬时结构波形,这种现象影响到DIVA(Directions Into Velocities of Articulators)模型对语音的正常处理.为此,本文提出了一种面向特征提取的脑电信号结构自适应稀疏分解模型,并在此基础上,通过采用匹配追踪算法求解最佳原子、使用过完备原子库中原子表示原始脑电信号等方法,实现了信号去噪的目的,效果好于传统的小波变换去噪方法.仿真实验表明,本文提出的方法提高了DIVA模型语音发音的精度.
文摘语音生成与获取是一个涉及大脑诸多部位的复杂认知过程,这个过程包括一种从依照句法和语义组织句子或短语的表述一直延伸到音素产生的分层结构。DIVA(directions into velocities of artculators)模型,是一种关于语音生成与获取后描述相关处理过程的数学模型,也是一种为了生成单词、音节或者音素,用来控制模拟声道运动的自适应网络模型。在当今真正具有生物学意义的语音生成和获取的神经网络模型中,DIVA模型的定义和测试相对而言是最彻底的,并且是唯一一种应用伪逆控制方案的模型。文中引入基于零空间的伪逆算法,对DIVA模型中的伪逆控制求解算法进行改进,从而更加精确地获得了DIVA模型的相应参数,提高了DIVA模型的鲁棒性。