The potential energy curves (PECs) of X^1∑g^+ and A^1∏u electronic states of the C2 radical have been studied using the full valence complete active space self-consistent field (CASSCF) method followed by the ...The potential energy curves (PECs) of X^1∑g^+ and A^1∏u electronic states of the C2 radical have been studied using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRC1) approach in conjunction with the aug-cc-pV6Z basis set for internuclear separations from 0.08 nm to 1.66 nm. With these PECs of the C2 radical, the spectroscopic parameters of three isotopologues (^12C2, ^12C^13C and ^13C2) have been determined. Compared in detail with previous studies reported in the literature, excellent agreement has been found. The complete vibrational levels G(v), inertial rotation constants By and centrifugal distortion constants D, for the ^12C2, ^12C^13C and ^13C2 isotopologues have been calculated for the first time for the X^1∑g^+ and A^1∏u electronic states when the rotational quantum number J equals zero. The results are in excellent agreement with previous experimental data in the literature, which shows that the presented molecular constants in this paper are reliable and accurate.展开更多
The potential energy curve (PEC) of HI(X^1∑^+) molecule is studied using the complete active space self-consistent field method followed by the highly accurate valence internally contracted multireference config...The potential energy curve (PEC) of HI(X^1∑^+) molecule is studied using the complete active space self-consistent field method followed by the highly accurate valence internally contracted multireference configuration interaction approach at the correlation-consistent basis sets, aug-cc-pV6Z for H and aug-cc-pV5Z-pp for I atom. Using the PEG of HI(X^1∑^+), the spectroscopic parameters of three isotopes, HI(X1E+), DI(X^1∑^+) and TI(X^1∑^+), are determined in the present work. For the HI(X^1∑^+), the values of Do, De, Re, ωe, ωeχe, αe and Be are 3.1551 eV, 3.2958 eV, 0.16183 nm, 2290.60 cm^-1, 40.0703 cm^-1, 0.1699 cm^-1 and 6.4373 cm^-1, respectively; for the DI (X^1∑^+), the values of D0, De, Re, ωe, ωeχe, αe and Be are 3.1965 eV, 3.2967 eV, 0.16183 nm, 1626.8 cm^-1, 20.8581 cm^-1, 0.0611 cm^-1 and 3.2468 cm^-1, respectively; for the TI (X^1∑^+), the values of Do, De, Re, ωe, ωeχe, αe and Be are of 3.2144 eV, 3.2967 eV, 0.16183 nm, 1334.43 cm^-1, 14.0765 cm^-1, 0.0338 cm^-1 and 2.1850 cm^-1, respectively. These results accord well with the available experimental results. With the PEC of HI(X^1∑^+) molecule obtained at present, a total of 19 vibrational states are predicted for the HI, 26 for the DI, and 32 for the TI, when the rotational quantum number J is equal to zero (J = 0). For each vibrational state, vibrational level G(v), inertial rotation constant By and centrifugal distortion constant Dv are determined when J = 0 for the first time, which are in excellent agreement with the experimental results.展开更多
Equilibrium internuclear separations, harmonic frequencies and potential energy curves (PECs) of HCI(X1∑+) molecule are investigated by using the highly accurate valence internally contracted multireference conf...Equilibrium internuclear separations, harmonic frequencies and potential energy curves (PECs) of HCI(X1∑+) molecule are investigated by using the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with a series of correlation-consistent basis sets in the valence range. The PECs are all fitted to the Murrell-Sorbie function, and they are used to accurately derive the spectroscopic parameters (De, Do, ωeXe, αe and Be) Compared with the available measurements, the PEC obtained at the basis set, aug-cc-pV5Z, is selected to investigate the vibrational manifolds. The constants Do, De, Re, We, ωeXe, Ore and Be at this basis set are 4.4006 eV, 4.5845 eV, 0.12757 rim, 2993.33 cm^-1, 52.6273 cm^-1, 0.2981 cm^-1 and 10.5841 cm^-1, respectively, which almost perfectly conform to the available experimental results. With the potential determined at the MRCI/aug-cc-pV5Z level of theory, by numerically solving the radial Schrodinger equation of nuclear motion in the adiabatic approximation, a total of 21 vibrational levels are predicted. Complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reproduced, which are in excellent agreement with the available Rydberg-Klein-Rees data. Most of these theoretical vibrational manifolds are reported for the first time to the best of our knowledge.展开更多
Interaction potentials for LiCI(X^1∑+) are constructed by the highly accurate valence internally contracted multireference configuration interaction in combination with a number of large correlation-consistent bas...Interaction potentials for LiCI(X^1∑+) are constructed by the highly accurate valence internally contracted multireference configuration interaction in combination with a number of large correlation-consistent basis sets, which are used to determine the spectroscopic parameters (D0, De, Re, ωe, ωeχe, Be and αe). The potentials obtained at the basis sets, i.e., aug-cc-pV5Z-JKFI for Cl and cc-pV5Z for Li, are selected to study the elastic collision properties of Li and Cl atoms at the impact energies from 1.0 ×10^-12 to 1.0× 10-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and their shapes are mainly dominated by the s-partial wave at very low impact energies. Only one shape resonance can be found in the total elastic cross sections over the present collision energy regime, which is rather strong and obviously broadened by the overlap contributions of the abundant resonances coming from various partial waves. Abundant resonances exist for the elastic partial-wave cross sections until l= 22 partial waves. The vibrational manifolds of the LiCI(X^1∑+) molecule, which are predicted at the present level of theory and the basis sets cc-pV5Z for Li and the aug-cc-pV5Z-JKFI for Cl, should achieve much high accuracy due to the employment of the large correlation-consistent basis sets.展开更多
The potential energy curve of the C12 (X1∑g+) is investigated by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with the largest correla...The potential energy curve of the C12 (X1∑g+) is investigated by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with the largest correlation-consistent basis set, aug-cc-pV6Z, in the valence range. The theoretical spectroscopic parameters and the molecular constants of three isotopes, 35Cl2, 35Cl37Cl and 37Cl2, are studied. For the 35Cl2(X1∑g+), the values of Do, De, Re, We, we)we, ae and Be are obtained to be 2.3921 eV, 2.4264 eV, 0.19939 nm, 555.13 cm-1, 2.6772 cm-1, 0.001481 cm-1 and 0.24225 cm-1, respectively. For the 356137Cl(X1∑g+), the values of Do, De, Re, We, WeXe, ae and Be are calculated to be 2.3918 eV, 2.4257 eV, 0.19939 nm, 547.68 cm-1, 2.6234 cm-1, 0.00140 cm^1 and 0.23572 cm-1, respectively. And for the 37Cl2(X1∑g+), the values of Do, De, Re, We, WeXe, ae and Be are obtained to be 2.3923 eV, 2.4257 eV, 0.19939 nm, 540.06 cm-1, 2.5556 cm-1, 0.00139 cm-1 and 0.22919 cm-1, respectively. These spectroscopic results are in good agreement with the available experimental data. With the potential of Cl2 molecule determined at the MRCI/aug-cc-pV6Z level of theory, the total of 59 vibrational states is predicted for each isotope when the rotational quantum number J equals zero (J = 0). The theoretical vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are determined when J = 0, which are in excellent accordance with the available experimental findings.展开更多
An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z...An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z, in the valence range. The potential is used to investigate the elastic scattering of two N atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and the shape of total elastic cross section curve is mainly dominated by the s-partial wave at very low collision energies. Three shape resonances are found in the total elastic cross sections. Concretely, the first one is very sharp and strong. It results from the g-partial-wave contribution and the resonant energy is 3.645 × 10^-6 a.u. The second one is contributed by the h-partial wave and the resonant energy is 1.752 × 10^-5 a.u. This resonance is broadened by those from the d- and f-partial waves. The third one comes from the l = 6 partial wave contribution and the resonant energy is 3.522 × 10^-5 a.u. This resonance is broadened by those from the g- and h-partial waves. The N2(X1∑g+) molecular parameters, which are determined at the current theoretical level, achieve very high accuracy due to the employment of the largest correlation-consistent basis set in the valence range.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10874064)the Program for Science & Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008)
文摘The potential energy curves (PECs) of X^1∑g^+ and A^1∏u electronic states of the C2 radical have been studied using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate valence internally contracted multireference configuration interaction (MRC1) approach in conjunction with the aug-cc-pV6Z basis set for internuclear separations from 0.08 nm to 1.66 nm. With these PECs of the C2 radical, the spectroscopic parameters of three isotopologues (^12C2, ^12C^13C and ^13C2) have been determined. Compared in detail with previous studies reported in the literature, excellent agreement has been found. The complete vibrational levels G(v), inertial rotation constants By and centrifugal distortion constants D, for the ^12C2, ^12C^13C and ^13C2 isotopologues have been calculated for the first time for the X^1∑g^+ and A^1∏u electronic states when the rotational quantum number J equals zero. The results are in excellent agreement with previous experimental data in the literature, which shows that the presented molecular constants in this paper are reliable and accurate.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874064)the Program for Science and Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008)
文摘The potential energy curve (PEC) of HI(X^1∑^+) molecule is studied using the complete active space self-consistent field method followed by the highly accurate valence internally contracted multireference configuration interaction approach at the correlation-consistent basis sets, aug-cc-pV6Z for H and aug-cc-pV5Z-pp for I atom. Using the PEG of HI(X^1∑^+), the spectroscopic parameters of three isotopes, HI(X1E+), DI(X^1∑^+) and TI(X^1∑^+), are determined in the present work. For the HI(X^1∑^+), the values of Do, De, Re, ωe, ωeχe, αe and Be are 3.1551 eV, 3.2958 eV, 0.16183 nm, 2290.60 cm^-1, 40.0703 cm^-1, 0.1699 cm^-1 and 6.4373 cm^-1, respectively; for the DI (X^1∑^+), the values of D0, De, Re, ωe, ωeχe, αe and Be are 3.1965 eV, 3.2967 eV, 0.16183 nm, 1626.8 cm^-1, 20.8581 cm^-1, 0.0611 cm^-1 and 3.2468 cm^-1, respectively; for the TI (X^1∑^+), the values of Do, De, Re, ωe, ωeχe, αe and Be are of 3.2144 eV, 3.2967 eV, 0.16183 nm, 1334.43 cm^-1, 14.0765 cm^-1, 0.0338 cm^-1 and 2.1850 cm^-1, respectively. These results accord well with the available experimental results. With the PEC of HI(X^1∑^+) molecule obtained at present, a total of 19 vibrational states are predicted for the HI, 26 for the DI, and 32 for the TI, when the rotational quantum number J is equal to zero (J = 0). For each vibrational state, vibrational level G(v), inertial rotation constant By and centrifugal distortion constant Dv are determined when J = 0 for the first time, which are in excellent agreement with the experimental results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10874064)the Program for Science and Technology Innovation Talents in Universities of Henan Province,China (Grant No. 2008HASTIT008)
文摘Equilibrium internuclear separations, harmonic frequencies and potential energy curves (PECs) of HCI(X1∑+) molecule are investigated by using the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with a series of correlation-consistent basis sets in the valence range. The PECs are all fitted to the Murrell-Sorbie function, and they are used to accurately derive the spectroscopic parameters (De, Do, ωeXe, αe and Be) Compared with the available measurements, the PEC obtained at the basis set, aug-cc-pV5Z, is selected to investigate the vibrational manifolds. The constants Do, De, Re, We, ωeXe, Ore and Be at this basis set are 4.4006 eV, 4.5845 eV, 0.12757 rim, 2993.33 cm^-1, 52.6273 cm^-1, 0.2981 cm^-1 and 10.5841 cm^-1, respectively, which almost perfectly conform to the available experimental results. With the potential determined at the MRCI/aug-cc-pV5Z level of theory, by numerically solving the radial Schrodinger equation of nuclear motion in the adiabatic approximation, a total of 21 vibrational levels are predicted. Complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reproduced, which are in excellent agreement with the available Rydberg-Klein-Rees data. Most of these theoretical vibrational manifolds are reported for the first time to the best of our knowledge.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60777012 and 10874064)the Program for Science and Technology Innovation Talents in Universities of Henan Province,China (Grant No. 2008HASTIT008)
文摘Interaction potentials for LiCI(X^1∑+) are constructed by the highly accurate valence internally contracted multireference configuration interaction in combination with a number of large correlation-consistent basis sets, which are used to determine the spectroscopic parameters (D0, De, Re, ωe, ωeχe, Be and αe). The potentials obtained at the basis sets, i.e., aug-cc-pV5Z-JKFI for Cl and cc-pV5Z for Li, are selected to study the elastic collision properties of Li and Cl atoms at the impact energies from 1.0 ×10^-12 to 1.0× 10-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and their shapes are mainly dominated by the s-partial wave at very low impact energies. Only one shape resonance can be found in the total elastic cross sections over the present collision energy regime, which is rather strong and obviously broadened by the overlap contributions of the abundant resonances coming from various partial waves. Abundant resonances exist for the elastic partial-wave cross sections until l= 22 partial waves. The vibrational manifolds of the LiCI(X^1∑+) molecule, which are predicted at the present level of theory and the basis sets cc-pV5Z for Li and the aug-cc-pV5Z-JKFI for Cl, should achieve much high accuracy due to the employment of the large correlation-consistent basis sets.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10874064 and 60777012)the Program for Science and Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008)the Natural Science Foundation of Educational Bureau of Henan Province of China (Grant No. 2010B140013)
文摘The potential energy curve of the C12 (X1∑g+) is investigated by the highly accurate valence internally contracted multireference configuration interaction (MRCI) approach in combination with the largest correlation-consistent basis set, aug-cc-pV6Z, in the valence range. The theoretical spectroscopic parameters and the molecular constants of three isotopes, 35Cl2, 35Cl37Cl and 37Cl2, are studied. For the 35Cl2(X1∑g+), the values of Do, De, Re, We, we)we, ae and Be are obtained to be 2.3921 eV, 2.4264 eV, 0.19939 nm, 555.13 cm-1, 2.6772 cm-1, 0.001481 cm-1 and 0.24225 cm-1, respectively. For the 356137Cl(X1∑g+), the values of Do, De, Re, We, WeXe, ae and Be are calculated to be 2.3918 eV, 2.4257 eV, 0.19939 nm, 547.68 cm-1, 2.6234 cm-1, 0.00140 cm^1 and 0.23572 cm-1, respectively. And for the 37Cl2(X1∑g+), the values of Do, De, Re, We, WeXe, ae and Be are obtained to be 2.3923 eV, 2.4257 eV, 0.19939 nm, 540.06 cm-1, 2.5556 cm-1, 0.00139 cm-1 and 0.22919 cm-1, respectively. These spectroscopic results are in good agreement with the available experimental data. With the potential of Cl2 molecule determined at the MRCI/aug-cc-pV6Z level of theory, the total of 59 vibrational states is predicted for each isotope when the rotational quantum number J equals zero (J = 0). The theoretical vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are determined when J = 0, which are in excellent accordance with the available experimental findings.
基金Project supported by the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2008HASTIT008)the National Natural Science Foundation of China (Grant Nos. 60777012 and 10874064)
文摘An interaction potential for an N2(X^1∑g^+) molecule is constructed by using the highly accurate valence internally contracted multireference configuration interaction method and the largest basis set, aug-cc-pV6Z, in the valence range. The potential is used to investigate the elastic scattering of two N atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. The derived total elastic cross sections are very large and almost constant at ultralow temperatures, and the shape of total elastic cross section curve is mainly dominated by the s-partial wave at very low collision energies. Three shape resonances are found in the total elastic cross sections. Concretely, the first one is very sharp and strong. It results from the g-partial-wave contribution and the resonant energy is 3.645 × 10^-6 a.u. The second one is contributed by the h-partial wave and the resonant energy is 1.752 × 10^-5 a.u. This resonance is broadened by those from the d- and f-partial waves. The third one comes from the l = 6 partial wave contribution and the resonant energy is 3.522 × 10^-5 a.u. This resonance is broadened by those from the g- and h-partial waves. The N2(X1∑g+) molecular parameters, which are determined at the current theoretical level, achieve very high accuracy due to the employment of the largest correlation-consistent basis set in the valence range.