期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多值编码GA-BP混合算法的板形板厚综合预测控制 被引量:1
1
作者 徐林 张宇献 +1 位作者 王建辉 顾树生 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第A02期132-136,共5页
为克服BP神经网络存在的收敛速度慢、易于陷入局部极值等不足,提出了可以同时优化BP神经网络的结构和参数的基于多值编码方式的嵌入梯度下降算子的混合遗传算法(GA-BP).并在此基础上针对板形板厚综合系统(AFC-AGC)具有强非线性、强耦合... 为克服BP神经网络存在的收敛速度慢、易于陷入局部极值等不足,提出了可以同时优化BP神经网络的结构和参数的基于多值编码方式的嵌入梯度下降算子的混合遗传算法(GA-BP).并在此基础上针对板形板厚综合系统(AFC-AGC)具有强非线性、强耦合而难以建立精确的数学模型的问题,设计了基于BP网络板形板厚综合预测模型,引入了反馈校正的方法来提高板形板厚控制系统的抗干扰能力.仿真结果表明,该模型可以实现板形板厚的精确控制,为热连轧板形板厚综合控制提供了一个新的有效的方法. 展开更多
关键词 混合遗传算法 多值编码 梯度下降 BP神经网络 板形板厚综合控制 预测控制
在线阅读 下载PDF
基于优化支持向量机的带钢延伸量软测量研究 被引量:1
2
作者 王超 王建辉 +1 位作者 顾树生 张宇献 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第8期1084-1088,共5页
带钢退火过程中存在多变量非线性主导因素和数据噪声,难以用数学模型精确描述退火炉内带钢的延伸量.针对这一问题,提出基于核主元分析(KPCA)与免疫粒子群(ICPSO)优化最小二乘支持向量机(LSSVM)的炉内带钢延伸量软测量方法.采用ICPSO算... 带钢退火过程中存在多变量非线性主导因素和数据噪声,难以用数学模型精确描述退火炉内带钢的延伸量.针对这一问题,提出基于核主元分析(KPCA)与免疫粒子群(ICPSO)优化最小二乘支持向量机(LSSVM)的炉内带钢延伸量软测量方法.采用ICPSO算法避免了粒子群算法易陷入局部最优的缺陷,利用ICPSO对LSSVM进行参数寻优,通过KPCA去除样本噪声,提取输入数据样本中的非线性主元信息,建立ICPSO-LSSVM软测量模型.此方法用于退火炉内带钢延伸量预测,通过现场生产数据仿真实验进行非线性函数估计;对比其他几种现有算法,实验结果表明本文方法具有较高的预测精度. 展开更多
关键词 核主元分析 带钢延伸量 免疫粒子群算法 最小二乘支持向量机 软测量
在线阅读 下载PDF
基于量子进化在线序贯极限学习机的变桨系统故障检测 被引量:5
3
作者 李强 张宇献 《太阳能学报》 EI CAS CSCD 北大核心 2022年第1期44-51,共8页
针对复杂工况下风电机组变桨系统故障检测问题,采用在线序贯极限学习机建立变桨系统状态监测模型,利用ReliefF算法进行模型的特征选择,通过量子进化算法优化在线序贯极限学习机的超参数集,并引入马氏距离函数计算变桨系统状态监测模型... 针对复杂工况下风电机组变桨系统故障检测问题,采用在线序贯极限学习机建立变桨系统状态监测模型,利用ReliefF算法进行模型的特征选择,通过量子进化算法优化在线序贯极限学习机的超参数集,并引入马氏距离函数计算变桨系统状态监测模型的残差,判断风电机组变桨系统的异常。以辽宁某风电场1.5 MW双馈风电机组变桨系统为例,将所提出的模型分别与粒子群优化极限学习机、粒子群优化支持向量机、随机权神经网络、极限学习机和反向传播神经网络模型进行对比,结果表明所提出的模型精度优于其他模型,所提方法的故障检测正确率高于3σ阈值法和核主成分分析方法。 展开更多
关键词 风电机组 故障检测 状态监测 变桨系统 在线序贯极限学习机 量子进化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部