We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stab...We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.展开更多
The I-V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interracial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two ...The I-V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interracial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interracial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interracial barrier engineering, could be exploited for novel applications in nonvolatile memory devices.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB925002)the National High Technology Research and Development Program of China (Grant No. 2008AA031401)and Chinese Academy of Sciences
文摘We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.
基金supported by the National Basic Research Program of China (Grant No. 2009CB930803)the National Natural Science Foundation of China (Grant No. 10834012)the Innovation Foundation of the Chinese Academy of Sciences (Grant No. KJCX2-YW-W24)
文摘The I-V characteristics of In2O3:SnO2/TiO2/In2O3:SnO2 junctions with different interracial barriers are inves- tigated by comparing experiments. A two-step resistance switching process is found for samples with two interfacial barriers produced by specific thermal treatment on the interfaces. The nonsynchronous occurrence of conducting filament formation through the oxide bulk and the reduction in the interracial barrier due to the migration of oxygen vacancies under the electric field is supposed to explain the two-step resistive switching process. The unique switching properties of the device, based on interracial barrier engineering, could be exploited for novel applications in nonvolatile memory devices.