期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Transformer和生成对抗网络相结合的图像修复
1
作者
林旭
王永雄
+3 位作者
陈俊帆
张凌樾
谢鑫宇
朱珺怡
《控制工程》
北大核心
2025年第7期1311-1319,共9页
现有图像修复模型无法高质量地修复大面积缺损的图像。针对此问题,提出了一种Transformer和生成对抗网络相结合的图像修复模型。首先,设计了一种新型掩码自适应输入模块,用于从输入图像中提取未被掩码遮蔽的图像块;其次,利用Transforme...
现有图像修复模型无法高质量地修复大面积缺损的图像。针对此问题,提出了一种Transformer和生成对抗网络相结合的图像修复模型。首先,设计了一种新型掩码自适应输入模块,用于从输入图像中提取未被掩码遮蔽的图像块;其次,利用Transformer从有效图像块中提取全局上下文信息,增强模型对缺损区域的补全能力;再次,使用快速傅里叶卷积(fast Fourier convolution,FFC)模块增强模型的细节修复能力,并消除输出图像中的伪影;最后,利用判别器网络对抗训练以提升整体网络的性能。利用所提模型对Place2数据集进行图像修复,测试结果表明:当掩码比例为50%~60%时,修复结果的峰值信噪比达到了19.7482 dB,结构相似性(structural similarity,SSIM)达到了0.7147。
展开更多
关键词
深度学习
图像修复
TRANSFORMER
生成对抗网络
快速傅里叶卷积
在线阅读
下载PDF
职称材料
题名
Transformer和生成对抗网络相结合的图像修复
1
作者
林旭
王永雄
陈俊帆
张凌樾
谢鑫宇
朱珺怡
机构
上海理工大学光电信息与计算机工程学院
出处
《控制工程》
北大核心
2025年第7期1311-1319,共9页
基金
上海市自然科学基金资助项目(22ZR1443700)。
文摘
现有图像修复模型无法高质量地修复大面积缺损的图像。针对此问题,提出了一种Transformer和生成对抗网络相结合的图像修复模型。首先,设计了一种新型掩码自适应输入模块,用于从输入图像中提取未被掩码遮蔽的图像块;其次,利用Transformer从有效图像块中提取全局上下文信息,增强模型对缺损区域的补全能力;再次,使用快速傅里叶卷积(fast Fourier convolution,FFC)模块增强模型的细节修复能力,并消除输出图像中的伪影;最后,利用判别器网络对抗训练以提升整体网络的性能。利用所提模型对Place2数据集进行图像修复,测试结果表明:当掩码比例为50%~60%时,修复结果的峰值信噪比达到了19.7482 dB,结构相似性(structural similarity,SSIM)达到了0.7147。
关键词
深度学习
图像修复
TRANSFORMER
生成对抗网络
快速傅里叶卷积
Keywords
Deep learning
image inpainting
Transformer
generative adversarial network
fast Fourier convolution
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Transformer和生成对抗网络相结合的图像修复
林旭
王永雄
陈俊帆
张凌樾
谢鑫宇
朱珺怡
《控制工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部