期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于分频式生成对抗网络的非成对水下图像增强
1
作者 牛玉贞 张凌昕 +2 位作者 兰杰 许瑞 柯逍 《电子学报》 北大核心 2025年第2期527-544,共18页
增强水下图像质量对水下作业领域的发展具有重要意义.现有的水下图像增强方法通常基于成对的水下图像和参考图像进行训练,然而实际获取与水下图像对应的参考图像比较困难,相比之下获得非成对高质量水下图像或者陆上图像较为容易.此外,... 增强水下图像质量对水下作业领域的发展具有重要意义.现有的水下图像增强方法通常基于成对的水下图像和参考图像进行训练,然而实际获取与水下图像对应的参考图像比较困难,相比之下获得非成对高质量水下图像或者陆上图像较为容易.此外,现有的水下图像增强方法很难同时针对各种失真类型进行图像增强.为了避免对成对训练数据的依赖和进一步降低获得训练数据的难度,并应对多样的水下图像失真类型,本文提出了一种基于分频式生成对抗网络(Frequency-Decomposed Generative Adversarial Network,FD-GAN)的非成对水下图像增强方法,并在此基础上设计了高低频双分支生成器用于重建高质量水下增强图像.具体来说,本文引入特征级别的小波变换将特征分为低频和高频部分,并基于循环一致性生成对抗网络对低频和高频部分区分处理.其中,低频分支采用结合低频注意力机制的编码-解码器结构实现对图像颜色和亮度的增强,高频分支则采用并行的高频注意力机制对各高频分量进行增强,从而实现对图像细节的恢复.在多个标准水下图像数据集上的实验结果表明,本文提出的方法在使用非成对的高质量水下图像和引入部分陆上图像的情况下,均能有效生成高质量的水下增强图像,且有效性和泛化性均优于当前主流的水下图像增强方法. 展开更多
关键词 水下图像增强 生成对抗网络 小波变换 注意力机制 高低频双分支生成器
在线阅读 下载PDF
PASER:加性多维KPI异常根因定位模型 被引量:1
2
作者 靖宇涵 何波 +3 位作者 张凌昕 李天星 王敬宇 刘聪 《软件学报》 EI CSCD 北大核心 2022年第2期738-750,共13页
利用多维属性关键性能指标(key performance indicators,KPI)的可加性特征,能够实现对大型互联网服务故障的根因定位.由一项或多项异常根因导致的KPI数据变化,会导致大量相关KPI数据值的变化.提出一种基于异常相似性评估和影响力因子的... 利用多维属性关键性能指标(key performance indicators,KPI)的可加性特征,能够实现对大型互联网服务故障的根因定位.由一项或多项异常根因导致的KPI数据变化,会导致大量相关KPI数据值的变化.提出一种基于异常相似性评估和影响力因子的剪枝搜索异常定位模型(pruning search model based on anomaly similarity and effectiveness factor for root cause location,PASER),该模型以多维KPI异常传播模型为基础,提出了衡量候选集合成为根因可能性的异常潜在分数评估方案;基于影响力的逐层剪枝搜索算法,将异常根因的定位时间降低到了平均约5.3 s.此外,针对异常根因定位中所使用的时间序列预测算法的准确性和时效性也进行了对比实验,PASER模型在所使用的数据集上的定位表现达到了0.99的F-score. 展开更多
关键词 智能运维 多维KPI 根因定位 剪枝搜索
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部