We examine the random motion of a charged test particle with a nonzero classical velocity driven by quantum electromagnetic vacuum fluctuations in a cylindrical spacetime and calculate both the velocity and position d...We examine the random motion of a charged test particle with a nonzero classical velocity driven by quantum electromagnetic vacuum fluctuations in a cylindrical spacetime and calculate both the velocity and position dispersions of the test particle. It is found that the dispersions display different behaviour in different directions. These differences can be understood as a result of the topology of the configuration and initial physical conditions.展开更多
We show that the velocity and position dispersions of a test particle with a nonzero constant classical velocity undergoing Brownian motion caused by electromagnetic vacuum fluctuations in a space with plane boundarie...We show that the velocity and position dispersions of a test particle with a nonzero constant classical velocity undergoing Brownian motion caused by electromagnetic vacuum fluctuations in a space with plane boundaries can be obgained from those of the static case by Lorentz transformation. We explicitly derive the Lorentz transformations relating the dispersions of the two cases and then apply them to the case of the Brownian motion of a test particle with a constant classical velocity parallel to the boundary between two conducting planes. Our results show that the influence of a nonzero initial velocity is negligible for nonrelativistic test particles.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10375023, the Program for NCET (No 04-0784), and the Key Project of the Ministry of Education of China (No 205110).
文摘We examine the random motion of a charged test particle with a nonzero classical velocity driven by quantum electromagnetic vacuum fluctuations in a cylindrical spacetime and calculate both the velocity and position dispersions of the test particle. It is found that the dispersions display different behaviour in different directions. These differences can be understood as a result of the topology of the configuration and initial physical conditions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10375023 and 10575035, the Program for NCET (04-0784), the Key Project of the Ministry of Education of China (205110).
文摘We show that the velocity and position dispersions of a test particle with a nonzero constant classical velocity undergoing Brownian motion caused by electromagnetic vacuum fluctuations in a space with plane boundaries can be obgained from those of the static case by Lorentz transformation. We explicitly derive the Lorentz transformations relating the dispersions of the two cases and then apply them to the case of the Brownian motion of a test particle with a constant classical velocity parallel to the boundary between two conducting planes. Our results show that the influence of a nonzero initial velocity is negligible for nonrelativistic test particles.