In this paper we report the leakage current, ferroelectric and piezoelectric properties of the YFe O3 film with hexagonal structure, which was fabricated on Si(111) substrate by a simple sol-gel method. The leakage ...In this paper we report the leakage current, ferroelectric and piezoelectric properties of the YFe O3 film with hexagonal structure, which was fabricated on Si(111) substrate by a simple sol-gel method. The leakage current test shows good characteristics as the leakage current density is 5.4 × 10^-6A/cm^2 under 5 V. The dominant leakage mechanism is found to be an Ohmic behavior at low electric field and space-charge-limited conduction at high electric field region. The P–E measurements show ferroelectric hysteresis loops with small remnant polarization and coercive field at room temperature.The distinct and switchable domain structures on the nanometer scale are observed by piezoresponse force microscopy,which testifies to the ferroelectricity of the YFe O3 film further.展开更多
Bi0.9Ba0.lFeO3 (BBFO)/La2/3Srl/3MnO3 (LSMO) heterostructures are fabricated on LaA103 (100) substrates by pulsed laser deposition. Giant remnant polarization value (~ 85 μC/cm2) and large saturated magnetizat...Bi0.9Ba0.lFeO3 (BBFO)/La2/3Srl/3MnO3 (LSMO) heterostructures are fabricated on LaA103 (100) substrates by pulsed laser deposition. Giant remnant polarization value (~ 85 μC/cm2) and large saturated magnetization value (~ 12.4 emu/cm3) for BBFO/LSMO heterostructures are demonstrated at room temperature. Mixed ferroelectric domain structures and low leakage current are observed and in favor of enhanced ferroelectrie properties in the BBFO/LSMO het- erostructures. The magnetic field-dependent magnetization measurements reveal the enhancement in the magnetic moment and improved magnetic hysteresis loop originating from the BBFO/LSMO interface. The heterostructure is proved to be effective in enhancing the ferroelectric and ferromagnetic performances in multiferroic BFO films at room temperature.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61471301,61078057,51202195,and 511172183)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20126102110045)the NPU Foundation for Fundamental Research(Grant Nos.JC201155,JC201271,and JC20120246)
文摘In this paper we report the leakage current, ferroelectric and piezoelectric properties of the YFe O3 film with hexagonal structure, which was fabricated on Si(111) substrate by a simple sol-gel method. The leakage current test shows good characteristics as the leakage current density is 5.4 × 10^-6A/cm^2 under 5 V. The dominant leakage mechanism is found to be an Ohmic behavior at low electric field and space-charge-limited conduction at high electric field region. The P–E measurements show ferroelectric hysteresis loops with small remnant polarization and coercive field at room temperature.The distinct and switchable domain structures on the nanometer scale are observed by piezoresponse force microscopy,which testifies to the ferroelectricity of the YFe O3 film further.
基金supported by the National Natural Science Foundation of China(Grant No.61078057)the Natural Science Foundation of Shannxi Province,China(Grant No.2011GM6013)+2 种基金the Foundation for Fundamental Research of Northwestern Polytechnical University of China(Grant Nos.JC20110270 and 3102014JCQ01029)the Open Project of Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education,Lanzhou University,China(Grant Nos.LZUMMM2013001 and LZUMMM2014007)the Scholarship Fund of China(Grant No.201303070058)
文摘Bi0.9Ba0.lFeO3 (BBFO)/La2/3Srl/3MnO3 (LSMO) heterostructures are fabricated on LaA103 (100) substrates by pulsed laser deposition. Giant remnant polarization value (~ 85 μC/cm2) and large saturated magnetization value (~ 12.4 emu/cm3) for BBFO/LSMO heterostructures are demonstrated at room temperature. Mixed ferroelectric domain structures and low leakage current are observed and in favor of enhanced ferroelectrie properties in the BBFO/LSMO het- erostructures. The magnetic field-dependent magnetization measurements reveal the enhancement in the magnetic moment and improved magnetic hysteresis loop originating from the BBFO/LSMO interface. The heterostructure is proved to be effective in enhancing the ferroelectric and ferromagnetic performances in multiferroic BFO films at room temperature.