期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
重加权稀疏非负矩阵分解的高光谱解混 被引量:6
1
作者 贾麒 廖守亿(指导) +1 位作者 张作宇 杨薪洁 《红外与激光工程》 EI CSCD 北大核心 2020年第S02期283-299,共17页
近年来基于非负矩阵分解(Nonnegative Matrix Factorization,NMF)的高光谱图像解混方法引起了大家的广泛关注。但是由于NMF问题的非凸性,该方法并不能保证解的唯一性,容易陷入局部极小。为了缩小NMF问题的解空间,提高解混精度,提出了一... 近年来基于非负矩阵分解(Nonnegative Matrix Factorization,NMF)的高光谱图像解混方法引起了大家的广泛关注。但是由于NMF问题的非凸性,该方法并不能保证解的唯一性,容易陷入局部极小。为了缩小NMF问题的解空间,提高解混精度,提出了一种新的丰度重加权稀疏NMF(ARSNMF)的解混方法。首先,考虑到丰度矩阵的稀疏性,稀疏约束被添加到NMF模型中。接着,考虑到问题计算复杂、不易于优化,将其转化为重加权稀疏约束的形式,既实现了的稀疏效果,又解决了范数难以求解的问题。为提高算法收敛速度,采用交替方向乘子算法(ADMM)对模型进行优化,将目标函数拆分成几个子问题进行独立求解。基于仿真数据和真实数据的仿真实验验证了该解混算法的有效性。 展开更多
关键词 高光谱图像解混 非负矩阵分解(NMF) 稀疏约束 重加权 交替方向乘子算法(ADMM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部