In this article, we study the quasilinear elliptic problem involving critical Hardy Sobolev exponents and Hardy terms. By variational methods and analytic techniques, we obtain the existence of sign-changing solutions...In this article, we study the quasilinear elliptic problem involving critical Hardy Sobolev exponents and Hardy terms. By variational methods and analytic techniques, we obtain the existence of sign-changing solutions to the problem.展开更多
In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argu...In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and the existence of infinitely many solutions to the system is established.展开更多
This paper is concerned with the quasi-linear equation with critical Sobolev-Hardy exponent whereΩ(?)RN(N(?)3)is a smooth bounded domain,0∈Ω,0(?)s<p,1<p<N,p(s):=p(N-s)/N-p is the critical Sobolev-Hardy exp...This paper is concerned with the quasi-linear equation with critical Sobolev-Hardy exponent whereΩ(?)RN(N(?)3)is a smooth bounded domain,0∈Ω,0(?)s<p,1<p<N,p(s):=p(N-s)/N-p is the critical Sobolev-Hardy exponent,λ>0,p(?)r<p,p:=Np/N-p is the critical Sobolev exponent,μ>,0(?)t<p,p(?)q<p(t)=p(N-t)/N-p.The existence of a positive solution is proved by Sobolev-Hardy inequality and variational method.展开更多
基金supported partly by the National Natural Science Foundation of China (10771219)
文摘In this article, we study the quasilinear elliptic problem involving critical Hardy Sobolev exponents and Hardy terms. By variational methods and analytic techniques, we obtain the existence of sign-changing solutions to the problem.
基金supported by the Science Foundation of State Ethnic Affairs Commission of the People's Republic of China(12ZNZ004)
文摘In this article, an elliptic system is investigated, which involves Hardy-type potentials, critical Sobolev-type nonlinearities, and critical Hardy-Sobolev-type nonlinearities. By a variational global-compactness argument, the Palais-Smale sequences of related approximation problems is analyzed and the existence of infinitely many solutions to the system is established.
基金This research is supported by the National Natural Science Foundation of China(l0171036) and the Natural Science Foundation of South-Central University For Nationalities(YZZ03001).
文摘This paper is concerned with the quasi-linear equation with critical Sobolev-Hardy exponent whereΩ(?)RN(N(?)3)is a smooth bounded domain,0∈Ω,0(?)s<p,1<p<N,p(s):=p(N-s)/N-p is the critical Sobolev-Hardy exponent,λ>0,p(?)r<p,p:=Np/N-p is the critical Sobolev exponent,μ>,0(?)t<p,p(?)q<p(t)=p(N-t)/N-p.The existence of a positive solution is proved by Sobolev-Hardy inequality and variational method.