期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于非结构网格求解三维D′Alembert介质中声波方程的并行加权Runge-Kutta间断有限元方法 被引量:7
1
作者 贺茜君 杨顶辉 +2 位作者 仇楚钧 周艳杰 常芸凡 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2021年第3期876-895,共20页
间断有限元方法(Discontinuous Galerkin method,简称DGM)在求解地震波动方程时具有低数值频散、网格剖分灵活等优点,因此,为适应数值模拟对模拟精度和复杂地质结构的要求,本文提出一种新的加权Runge-Kutta间断有限元(weighted Runge-Ku... 间断有限元方法(Discontinuous Galerkin method,简称DGM)在求解地震波动方程时具有低数值频散、网格剖分灵活等优点,因此,为适应数值模拟对模拟精度和复杂地质结构的要求,本文提出一种新的加权Runge-Kutta间断有限元(weighted Runge-Kutta discontinuous Galerkin,简称WRKDG)方法,用于求解三维D′Alembert介质中声波方程.本文不仅详细推导了其数值格式,特别地,根据常微分方程理论给出了满足数值稳定性条件的一般经验公式,并首次对该方法的数值频散和耗散进行了深入分析,且考虑了耗散参数对结果的影响.同时,我们也对该方法进行了精度测试,并分析了3D情形下WRKDG方法的并行加速比,结果表明3D WRKDG方法具有良好的并行性.最后,我们给出了包含均匀模型、非规则几何模型以及非均匀Marmousi模型在内的数值模拟算例.结果表明,该方法不仅计算准确,能与解析解很好地吻合,且能有效模拟包含球体在内的非规则模型及非均匀Marmousi模型中的衰减声波波场.数值模拟实验进一步验证了WRKDG方法在求解三维D′Alembert介质中声波方程时的正确性和有效性,并获得了对这种强衰减介质中波传播特征的规律性新认识. 展开更多
关键词 间断有限元方法 三维 数值频散 D′Alembert介质 并行效率 强衰减
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部