期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进MobileNetV3的茶叶做青图像检测方法
1
作者
胡龙杰
张林鍹
+2 位作者
项凤华
巴音塔娜
黄为民
《南京农业大学学报》
北大核心
2025年第5期1212-1222,共11页
[目的]茶叶的做青过程是塑造茶叶“金镶边”色泽与发酵风味的核心环节,但传统茶叶做青过程中需要人工频繁打开做青桶检查茶叶发酵情况。这种方式不仅劳动强度大且发酵程度的判断受工人主观因素影响,难以形成统一、稳定的标准,造成茶叶...
[目的]茶叶的做青过程是塑造茶叶“金镶边”色泽与发酵风味的核心环节,但传统茶叶做青过程中需要人工频繁打开做青桶检查茶叶发酵情况。这种方式不仅劳动强度大且发酵程度的判断受工人主观因素影响,难以形成统一、稳定的标准,造成茶叶发酵品质参差不齐,因此为了实现做青过程中做青容器内叶片发酵进展的智能检测,提出了一种基于改进MobileNetV3的茶叶做青图像检测识别模型。[方法]针对做青叶片识别任务中“金边”目标分布不规则且多为小目标难检测的特点,提出一种高效多尺度通道注意力(efficient multi-scale channel attention,EMCA)模块,旨在轻量化网络结构的同时,实现对小目标及边缘细节的精确捕捉,降低特征的漏检现象。此外,为使模型充分理解小目标所处环境,建立深浅特征图间的长短期依赖关系,对原有精简空间池化解码头(lite reduce atrous spatial pyramid pooling,LRASPP)进行了改进,使不同尺度的特征图进行信息交互与融合,进而提高特征表示的丰富度与准确性。[结果]该算法在自建茶叶做青数据集上进行试验,模型平均交并比82.95%,平均像素准确率90.53%,模型参数量1.823 M。相比MobileNetV3模型,其平均交并比和平均像素准确率分别提高4.93%和8.26%,参数量减少44%。[结论]该方法能够实现做青过程中茶叶做青程度的精确识别,对于实现茶叶做青过程智能化具有重要意义。
展开更多
关键词
图像识别
语义分割
茶叶
MobileNetV3
树莓派
在线阅读
下载PDF
职称材料
基于StyleGAN2-ADA和改进YOLO v7的葡萄叶片早期病害检测方法
被引量:
30
2
作者
张林鍹
巴音塔娜
曾庆松
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第1期241-252,共12页
为实现葡萄早期病害的快速准确识别,针对葡萄病害的相似表型症状识别率低及小病斑检测困难的问题,以葡萄黑腐病和黑麻疹病为研究对象,提出了一种基于自适应鉴别器增强的样式生成对抗网络与改进的YOLO v7相结合的葡萄黑腐病和黑麻疹病的...
为实现葡萄早期病害的快速准确识别,针对葡萄病害的相似表型症状识别率低及小病斑检测困难的问题,以葡萄黑腐病和黑麻疹病为研究对象,提出了一种基于自适应鉴别器增强的样式生成对抗网络与改进的YOLO v7相结合的葡萄黑腐病和黑麻疹病的病斑检测方法。通过自适应鉴别器增强的样式生成对抗网络和拉普拉斯滤波器的方差扩充葡萄病害数据。采用MSRCP算法进行图像增强,改善光照环境凸显病斑特征。以YOLO v7网络框架为基础,将BiFormer注意力机制嵌入特征提取网络,强化目标区域的关键特征;采用BiFPN代替PA-FPN,更好地实现低层细节特征与高层语义信息融合,以同时降低计算复杂度;在YOLO v7的检测头部分嵌入SPD模块,以提高模型对低分辨率图像的检测性能;并采用CIoU与NWD损失函数组合对损失函数重新定义,实现对小目标快速、准确识别。实验结果表明,该方法病斑检测精确率达到94.1%,相比原始算法提升5.7个百分点,与Faster R-CNN、YOLO v3-SPP和YOLO v5x等模型相比分别提高3.3、3.8、4.4个百分点,能够实现葡萄早期病害快速准确识别,对于保障葡萄产业发展具有重要意义。
展开更多
关键词
葡萄
病害识别
StyleGAN2-ADA
目标检测
自注意力机制
YOLO
v7
在线阅读
下载PDF
职称材料
基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测
被引量:
8
3
作者
马志侠
张林鍹
+3 位作者
巴音塔娜
谢明浩
张盼盼
王馨
《太阳能学报》
EI
CAS
CSCD
北大核心
2024年第6期429-435,共7页
为提高风电功率预测精度,提出基于自适应二次模态分解(QMD)、卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的超短期风电功率预测模型。针对风电功率的波动性,利用改进的完全自适应噪声集成经验模态分解方法(ICEEMDAN)对风电功率数据...
为提高风电功率预测精度,提出基于自适应二次模态分解(QMD)、卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的超短期风电功率预测模型。针对风电功率的波动性,利用改进的完全自适应噪声集成经验模态分解方法(ICEEMDAN)对风电功率数据进行分解。引入麻雀搜索算法(SSA)对变分模态分解(VMD)的分解数量与惩罚因子进行优化,使VMD具有自适应性。将ICEEMDAN分解得到的高频分量I_(1)用SSA-VMD进行第二次分解,降低序列不平稳度。同时,构建包含2层池化层的CNN网络进行特征提取与BiLSTM网络的超短期预测模型,最终的风电功率即为各子序列预测结果之和。通过算例分析进行实验表明,所提风电功率预测方法的预测精度优于其他模型,验证了预测模型的优越性。
展开更多
关键词
卷积神经网络
长短期记忆网络
变分模态分解
风电功率预测
二次模态分解
麻雀搜索算法
在线阅读
下载PDF
职称材料
题名
基于改进MobileNetV3的茶叶做青图像检测方法
1
作者
胡龙杰
张林鍹
项凤华
巴音塔娜
黄为民
机构
新疆大学电气工程学院
清华大学国家计算机集成制造系统工程技术研究中心
福建智云动能智慧科技有限公司
出处
《南京农业大学学报》
北大核心
2025年第5期1212-1222,共11页
基金
福建省南平市“揭榜挂帅”项目(20232120052)。
文摘
[目的]茶叶的做青过程是塑造茶叶“金镶边”色泽与发酵风味的核心环节,但传统茶叶做青过程中需要人工频繁打开做青桶检查茶叶发酵情况。这种方式不仅劳动强度大且发酵程度的判断受工人主观因素影响,难以形成统一、稳定的标准,造成茶叶发酵品质参差不齐,因此为了实现做青过程中做青容器内叶片发酵进展的智能检测,提出了一种基于改进MobileNetV3的茶叶做青图像检测识别模型。[方法]针对做青叶片识别任务中“金边”目标分布不规则且多为小目标难检测的特点,提出一种高效多尺度通道注意力(efficient multi-scale channel attention,EMCA)模块,旨在轻量化网络结构的同时,实现对小目标及边缘细节的精确捕捉,降低特征的漏检现象。此外,为使模型充分理解小目标所处环境,建立深浅特征图间的长短期依赖关系,对原有精简空间池化解码头(lite reduce atrous spatial pyramid pooling,LRASPP)进行了改进,使不同尺度的特征图进行信息交互与融合,进而提高特征表示的丰富度与准确性。[结果]该算法在自建茶叶做青数据集上进行试验,模型平均交并比82.95%,平均像素准确率90.53%,模型参数量1.823 M。相比MobileNetV3模型,其平均交并比和平均像素准确率分别提高4.93%和8.26%,参数量减少44%。[结论]该方法能够实现做青过程中茶叶做青程度的精确识别,对于实现茶叶做青过程智能化具有重要意义。
关键词
图像识别
语义分割
茶叶
MobileNetV3
树莓派
Keywords
image recognition
semantic segmentation
tea
MobileNetV3
raspberry PI
分类号
TP391 [自动化与计算机技术—计算机应用技术]
S24 [农业科学—农业电气化与自动化]
在线阅读
下载PDF
职称材料
题名
基于StyleGAN2-ADA和改进YOLO v7的葡萄叶片早期病害检测方法
被引量:
30
2
作者
张林鍹
巴音塔娜
曾庆松
机构
新疆大学电气工程学院
清华大学国家计算机集成制造系统工程技术研究中心
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2024年第1期241-252,共12页
基金
新疆维吾尔自治区自然科学基金项目(2022D01C431)。
文摘
为实现葡萄早期病害的快速准确识别,针对葡萄病害的相似表型症状识别率低及小病斑检测困难的问题,以葡萄黑腐病和黑麻疹病为研究对象,提出了一种基于自适应鉴别器增强的样式生成对抗网络与改进的YOLO v7相结合的葡萄黑腐病和黑麻疹病的病斑检测方法。通过自适应鉴别器增强的样式生成对抗网络和拉普拉斯滤波器的方差扩充葡萄病害数据。采用MSRCP算法进行图像增强,改善光照环境凸显病斑特征。以YOLO v7网络框架为基础,将BiFormer注意力机制嵌入特征提取网络,强化目标区域的关键特征;采用BiFPN代替PA-FPN,更好地实现低层细节特征与高层语义信息融合,以同时降低计算复杂度;在YOLO v7的检测头部分嵌入SPD模块,以提高模型对低分辨率图像的检测性能;并采用CIoU与NWD损失函数组合对损失函数重新定义,实现对小目标快速、准确识别。实验结果表明,该方法病斑检测精确率达到94.1%,相比原始算法提升5.7个百分点,与Faster R-CNN、YOLO v3-SPP和YOLO v5x等模型相比分别提高3.3、3.8、4.4个百分点,能够实现葡萄早期病害快速准确识别,对于保障葡萄产业发展具有重要意义。
关键词
葡萄
病害识别
StyleGAN2-ADA
目标检测
自注意力机制
YOLO
v7
Keywords
grape
disease identification
StyleGAN2-ADA
object detection
self-attention mechanism
YOLO v7
分类号
TP391 [自动化与计算机技术—计算机应用技术]
S24 [农业科学—农业电气化与自动化]
在线阅读
下载PDF
职称材料
题名
基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测
被引量:
8
3
作者
马志侠
张林鍹
巴音塔娜
谢明浩
张盼盼
王馨
机构
新疆大学电气工程学院
清华大学国家计算机集成制造系统工程技术研究中心(CIMS)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2024年第6期429-435,共7页
文摘
为提高风电功率预测精度,提出基于自适应二次模态分解(QMD)、卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的超短期风电功率预测模型。针对风电功率的波动性,利用改进的完全自适应噪声集成经验模态分解方法(ICEEMDAN)对风电功率数据进行分解。引入麻雀搜索算法(SSA)对变分模态分解(VMD)的分解数量与惩罚因子进行优化,使VMD具有自适应性。将ICEEMDAN分解得到的高频分量I_(1)用SSA-VMD进行第二次分解,降低序列不平稳度。同时,构建包含2层池化层的CNN网络进行特征提取与BiLSTM网络的超短期预测模型,最终的风电功率即为各子序列预测结果之和。通过算例分析进行实验表明,所提风电功率预测方法的预测精度优于其他模型,验证了预测模型的优越性。
关键词
卷积神经网络
长短期记忆网络
变分模态分解
风电功率预测
二次模态分解
麻雀搜索算法
Keywords
convolutional neural network
long-short term memory network
variational mode decomposition
wind power forecasting
quadratic mode decomposition
sparrow search algorithm
分类号
TM614 [电气工程—电力系统及自动化]
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进MobileNetV3的茶叶做青图像检测方法
胡龙杰
张林鍹
项凤华
巴音塔娜
黄为民
《南京农业大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于StyleGAN2-ADA和改进YOLO v7的葡萄叶片早期病害检测方法
张林鍹
巴音塔娜
曾庆松
《农业机械学报》
EI
CAS
CSCD
北大核心
2024
30
在线阅读
下载PDF
职称材料
3
基于自适应二次分解与CNN-BiLSTM的超短期风电功率预测
马志侠
张林鍹
巴音塔娜
谢明浩
张盼盼
王馨
《太阳能学报》
EI
CAS
CSCD
北大核心
2024
8
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部