期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于GAF-CNN的船用空压机故障噪声诊断方法
1
作者 董明 崔德馨 李祥林 《船舶》 2025年第1期106-114,共9页
船用空压机工作环境恶劣,内外激励源众多,采集的噪声信号具有强烈的时变性,会导致故障诊断精度较低,难以实现船用空压机各类故障的有效识别。为此,该文提出将格拉姆角场(Gramian angular field,GAF)编码和卷积神经网络(convolutional ne... 船用空压机工作环境恶劣,内外激励源众多,采集的噪声信号具有强烈的时变性,会导致故障诊断精度较低,难以实现船用空压机各类故障的有效识别。为此,该文提出将格拉姆角场(Gramian angular field,GAF)编码和卷积神经网络(convolutional neural network,CNN)法相结合的故障诊断方法。首先,阐述了GAF和CNN的基本原理、方法和实施步骤;然后,通过试验模拟了船用空压机的各类故障,并采集相应噪声信号,再利用GAF将一维时域信号转换为二维图像,将特征信息映射为二维图像的颜色、点等纹理特征;最后,将二维图像输入至CNN中进行特征提取和故障诊断。试验结果表明:在保证运行效率的前提下,该方法能够有效识别船用空压机的各类故障,诊断精度达到99.2%,优于其他算法,可为船舶故障智能诊断的应用提供了新途径和新思路。 展开更多
关键词 船用空压机 噪声分析 格拉姆角场 卷积神经网络 故障诊断
在线阅读 下载PDF
基于VMD-多尺度排列熵和SVM的船用空压机故障诊断方法 被引量:1
2
作者 胡以怀 李从跃 +3 位作者 沈威 崔德馨 张成 芮晓松 《中国测试》 CAS 北大核心 2024年第6期20-27,共8页
船用机械振动信号存在非线性、非平稳性问题,故障特征难提取,通过变分模态分解(variational mode decomposition,VMD)多尺度排列熵(multiscale permutation entropy,MPE)与支持向量机(support vector machine,SVM)融合的故障诊断方法,... 船用机械振动信号存在非线性、非平稳性问题,故障特征难提取,通过变分模态分解(variational mode decomposition,VMD)多尺度排列熵(multiscale permutation entropy,MPE)与支持向量机(support vector machine,SVM)融合的故障诊断方法,对振动信号进行研究。以空压机为例,首先,模拟6种空压机工况,对各工况的热工参数进行测试,分析各工况热工参数的变化程度,并对采集的振动信号进行频域分析。然后通过VMD对振动信号进行分解,得到一系列固有模态分量,计算与原始信号的互相关系数筛选敏感固有模态分量。最后计算出敏感固有模态分量的多尺度排列熵,将其作为特征向量,输入到SVM中,进行故障辨识。实验结果表明:VMD多尺度排列熵与SVM融合的空压机故障辨识方法,能有效地识别故障类型,整体准确率可保持在98.6667%,将此方法与其他方法进行对比,证明此方法有效。 展开更多
关键词 船用往复式空压机 变分模态分解 多尺度排列熵 故障诊断
在线阅读 下载PDF
基于小波变换和CNN的船用机械故障诊断 被引量:7
3
作者 李从跃 胡以怀 +3 位作者 沈威 崔德馨 张成 芮晓松 《中国测试》 CAS 北大核心 2024年第3期183-192,共10页
针对船用机械故障特征自适应提取与智能化诊断问题,采用连续小波变换与卷积神经网络的船舶机械故障诊断方法。以船用风机为例,首先模拟船用机械不同故障并采集振动信号,通过连续小波变换将一维振动信号转化为特征图谱,其包含大量的时频... 针对船用机械故障特征自适应提取与智能化诊断问题,采用连续小波变换与卷积神经网络的船舶机械故障诊断方法。以船用风机为例,首先模拟船用机械不同故障并采集振动信号,通过连续小波变换将一维振动信号转化为特征图谱,其包含大量的时频信息。然后通过多次训练后,确定网络结构参数,建立卷积神经网络结构,将时频图作为卷积神经网络输入,挖掘更深层次的高度抽象的故障特征信息。最后在卷积神经网络的输出层接入softmax分类器,实现船用机械的故障诊断。实验结果表明:所提方法能准确识别故障类型,且具有较强的鲁棒性和泛化能力,诊断准确率可达99.3%。与集成经验模态分解、极限学习机故障诊断方法相比,该方法有更高的诊断精度。 展开更多
关键词 连续小波变换 卷积神经网络 小波时频图 船用机械 故障诊断
在线阅读 下载PDF
基于WOA-RF的船用风机故障诊断
4
作者 沈威 胡以怀 +3 位作者 闫国华 李从跃 崔德馨 韦小红 《上海海事大学学报》 北大核心 2024年第2期104-110,共7页
针对船用风机典型故障诊断问题,利用鲸鱼优化算法优化随机森林(random forest optimized bywhale optimization algorithm,WOA-RF)对故障进行诊断,并通过实验验证该方法的准确性。实验模拟包括正常工况和5种异常工况在内的6种工况。采... 针对船用风机典型故障诊断问题,利用鲸鱼优化算法优化随机森林(random forest optimized bywhale optimization algorithm,WOA-RF)对故障进行诊断,并通过实验验证该方法的准确性。实验模拟包括正常工况和5种异常工况在内的6种工况。采集所有不同工况下的振动信号,分别提取时域、频域下的特征参数构建第一特征向量。通过传统随机森林筛选得到具有更优分类效果的第二特征向量,再输入WOA-RF中完成故障识别。实验结果表明,本文提出的方法能够有效识别故障模式,平均预测准确率超99%。与其他算法对比,这种基于信息融合和WOA-RF的船用风机故障诊断方法准确性更高。 展开更多
关键词 随机森林 鲸鱼优化算法(WOA) 船用风机 故障诊断
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部