期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种新的基于值函数迁移的快速Sarsa算法 被引量:3
1
作者 傅启明 刘全 +2 位作者 尤树华 黄蔚 章晓芳 《电子学报》 EI CAS CSCD 北大核心 2014年第11期2157-2161,共5页
知识迁移是当前机器学习领域的一个新的研究热点.其基本思想是通过将经验知识从历史任务到目标任务的迁移,达到提高算法收敛速度和收敛精度的目的.针对当前强化学习领域中经典算法收敛速度慢的问题,提出在学习过程中通过迁移值函数信息... 知识迁移是当前机器学习领域的一个新的研究热点.其基本思想是通过将经验知识从历史任务到目标任务的迁移,达到提高算法收敛速度和收敛精度的目的.针对当前强化学习领域中经典算法收敛速度慢的问题,提出在学习过程中通过迁移值函数信息,减少算法收敛所需要的样本数量,加快算法的收敛速度.基于强化学习中经典的在策略Sarsa算法的学习框架,结合值函数迁移方法,优化算法初始值函数的设置,提出一种新的基于值函数迁移的快速Sarsa算法——VFT-Sarsa.该算法在执行前期,通过引入自模拟度量方法,在状态空间以及动作空间一致的情况下,对目标任务中的状态与历史任务中的状态之间的距离进行度量,对其中相似并满足一定条件的状态进行值函数迁移,而后再通过学习算法进行学习.将VTF-Sarsa算法用于Random Walk问题,并与经典的Sarsa算法、Q学习算法以及具有较好收敛速度的QV算法进行比较,实验结果表明,该算法在保证收敛精度的基础上,具有更快的收敛速度. 展开更多
关键词 强化学习 VFT-Sarsa算法 自模拟度量 值函数迁移
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部