We study the problems of stability and stabilization for Takagi-Sugeno (T-S) fuzzy time-delay systems. First, by constructing a less-redundant Lyapunov-Krasovskii function and introducing a useful inequality, an inn...We study the problems of stability and stabilization for Takagi-Sugeno (T-S) fuzzy time-delay systems. First, by constructing a less-redundant Lyapunov-Krasovskii function and introducing a useful inequality, an innovative stability criterion is obtained, which gives a significant improvement on the performance. Compared with the exiting references, our result can use fewer unknown variables and get better results. Furthermore, based on the derived stability criteria, a new stabilization condition is developed, in which the controller gain and the maximum allowable delay bound can be obtained simultaneously. The conditions are all derived in the form of linear matrix inequality, which are easy to verify. Finally, numerical examples are given to show the effectiveness of the proposed methods.展开更多
This paper deals with the issue of synchronization of delayed complex networks. Differing from previous results, the delay interval [0, d(t)] is divided into some variable subintervals by employing a new method of w...This paper deals with the issue of synchronization of delayed complex networks. Differing from previous results, the delay interval [0, d(t)] is divided into some variable subintervals by employing a new method of weighting delays. Thus, new synchronization criteria for complex networks with time-varying delays are derived by applying this weighting-delay method and introducing some free weighting matrices. The obtained results have proved to be less conservative than previous results. The sufficient conditions of asymptotical synchronization are derived in the form of linear matrix inequality, which are easy to verify. Finally, several simulation examples are provided to show the effectiveness of the proposed results.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008, 61034005, and 61104021)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)the National Basic Research Program of China (Grant No. 2009CB320601)
文摘We study the problems of stability and stabilization for Takagi-Sugeno (T-S) fuzzy time-delay systems. First, by constructing a less-redundant Lyapunov-Krasovskii function and introducing a useful inequality, an innovative stability criterion is obtained, which gives a significant improvement on the performance. Compared with the exiting references, our result can use fewer unknown variables and get better results. Furthermore, based on the derived stability criteria, a new stabilization condition is developed, in which the controller gain and the maximum allowable delay bound can be obtained simultaneously. The conditions are all derived in the form of linear matrix inequality, which are easy to verify. Finally, numerical examples are given to show the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048 and 61034005)the Research Fund for the Doctoral Program of China Higher Education (Grant No. 20070145015)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)
文摘This paper deals with the issue of synchronization of delayed complex networks. Differing from previous results, the delay interval [0, d(t)] is divided into some variable subintervals by employing a new method of weighting delays. Thus, new synchronization criteria for complex networks with time-varying delays are derived by applying this weighting-delay method and introducing some free weighting matrices. The obtained results have proved to be less conservative than previous results. The sufficient conditions of asymptotical synchronization are derived in the form of linear matrix inequality, which are easy to verify. Finally, several simulation examples are provided to show the effectiveness of the proposed results.