随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-of-Interest,POI)推荐为基于位置的服务提供了前所未有的机会.兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐.然而用户-兴趣点矩阵的极端...随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-of-Interest,POI)推荐为基于位置的服务提供了前所未有的机会.兴趣点推荐是一种基于上下文信息的位置感知的个性化推荐.然而用户-兴趣点矩阵的极端稀疏给兴趣点推荐的研究带来严峻挑战.为处理数据稀疏问题,文中利用兴趣点的地理、文本、社会、分类与流行度信息,并将这些因素进行有效地融合,提出一种上下文感知的概率矩阵分解兴趣点推荐算法,称为TGSC-PMF.首先利用潜在狄利克雷分配(Latent Dirichlet Allocation,LDA)模型挖掘兴趣点相关的文本信息学习用户的兴趣话题生成兴趣相关分数;其次提出一种自适应带宽核评估方法构建地理相关性生成地理相关分数;然后通过用户社会关系的幂律分布构建社会相关性生成社会相关分数;另外结合用户的分类偏好与兴趣点的流行度构建分类相关性生成分类相关分数,最后利用概率矩阵分解模型(Probabilistic Matrix Factorization,PMF),将兴趣、地理、社会、分类的相关分数进行有效地融合,从而生成推荐列表推荐给用户感兴趣的兴趣点.该文在一个真实LBSN签到数据集上进行实验,结果表明该算法相比其他先进的兴趣点推荐算法具有更好的推荐效果.展开更多
随着大数据技术的快速发展,推荐系统成为大数据领域里的一个重要的研究方向.随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-Of-Interest,POI)推荐成为一个重要的研究热点,帮助人们发现有趣的并吸...随着大数据技术的快速发展,推荐系统成为大数据领域里的一个重要的研究方向.随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-Of-Interest,POI)推荐成为一个重要的研究热点,帮助人们发现有趣的并吸引人的位置,特别是当用户在异地旅行的时候.由于用户的签到行为具有高稀疏性,为兴趣点推荐带来很大的挑战.为处理用户签到数据的稀疏性问题,越来越多的研究结合地理影响、时间效应、社会相关性、内容信息和流行度影响这些方面的因素为提高兴趣点推荐的性能.然而,目前的研究缺乏一种综合分析上述所有因素共同作用的方法来处理兴趣点的数据稀疏问题,特别是异地推荐场景被目前大多数研究工作所忽略.针对以上所述的挑战,文中提出一种联合概率生成模型,称为GTSCP,模拟用户签到行为的决策过程,该模型有效地融合上述因素来处理数据稀疏性,特别是异地推荐场景.文章所提的兴趣点推荐方法包含离线模型和在线推荐两个部分.文中所提的GTSCP联合模型支持本地和异地两种推荐场景.文章在多个真实LBSNs的大规模签到数据集上进行实验,结果表明该算法相比其它先进的兴趣点推荐算法具有更好的推荐效果.展开更多
基金Supported by the National High-Tech Research and Development Plan of China under Grant No.2006AA01Z206 (国家高技术研究发展计划(863))the National Key Project of Scientific and Technical Supporting Programs of China under Grant No.2006BAH02A03 (国家"十一五"科技支撑计划)
文摘随着大数据技术的快速发展,推荐系统成为大数据领域里的一个重要的研究方向.随着基于位置社交网络(Location-Based Social Networks,LBSN)的快速发展,兴趣点(Point-Of-Interest,POI)推荐成为一个重要的研究热点,帮助人们发现有趣的并吸引人的位置,特别是当用户在异地旅行的时候.由于用户的签到行为具有高稀疏性,为兴趣点推荐带来很大的挑战.为处理用户签到数据的稀疏性问题,越来越多的研究结合地理影响、时间效应、社会相关性、内容信息和流行度影响这些方面的因素为提高兴趣点推荐的性能.然而,目前的研究缺乏一种综合分析上述所有因素共同作用的方法来处理兴趣点的数据稀疏问题,特别是异地推荐场景被目前大多数研究工作所忽略.针对以上所述的挑战,文中提出一种联合概率生成模型,称为GTSCP,模拟用户签到行为的决策过程,该模型有效地融合上述因素来处理数据稀疏性,特别是异地推荐场景.文章所提的兴趣点推荐方法包含离线模型和在线推荐两个部分.文中所提的GTSCP联合模型支持本地和异地两种推荐场景.文章在多个真实LBSNs的大规模签到数据集上进行实验,结果表明该算法相比其它先进的兴趣点推荐算法具有更好的推荐效果.