在只有图像和目标文本提示作为输入的情况下,对真实图像进行基于文本引导的编辑是一项极具挑战性的任务。以往基于微调大型预训练扩散模型的方法,往往对源文本特征和目标文本特征进行简单的插值组合,用于引导图像生成过程,这限制了其编...在只有图像和目标文本提示作为输入的情况下,对真实图像进行基于文本引导的编辑是一项极具挑战性的任务。以往基于微调大型预训练扩散模型的方法,往往对源文本特征和目标文本特征进行简单的插值组合,用于引导图像生成过程,这限制了其编辑能力,同时微调大型扩散模型极易出现过拟合且耗时长的问题。提出了一种基于映射融合嵌入扩散模型的文本引导图像编辑方法(Text-guided image editing method based on diffusion model with mapping-fusion embedding,MFE-Diffusion)。该方法由两部分组成:(1)大型预训练扩散模型与源文本特征向量联合学习框架,使模型可以快速学习以重建给定的原图像;(2)特征映射融合模块,深度融合目标文本与原图像的特征信息,生成条件嵌入,用于引导图像编辑过程。在具有挑战性的文本引导图像编辑基准TEdBench上进行实验验证,结果表明所提方法在图像编辑性能上具有优势。展开更多
智能电网中边缘计算迁移技术的应用一定程度上满足了电力业务的实时性要求,然而,随着电网规模的扩大,电力终端设备接入密度越发增高,分布情况越发复杂,传统的静态边缘计算节点难以完全覆盖分散的电力终端设备,进而导致计算迁移性能和效...智能电网中边缘计算迁移技术的应用一定程度上满足了电力业务的实时性要求,然而,随着电网规模的扩大,电力终端设备接入密度越发增高,分布情况越发复杂,传统的静态边缘计算节点难以完全覆盖分散的电力终端设备,进而导致计算迁移性能和效率过低。提出了一种基于双重延迟深度确定性策略梯度的多无人机辅助计算迁移算法(Collaborative Cloud‑Edge Computing Offload‑ing Based on TD3,CeCO‑TD3),该算法构建了一个联合无人机飞行角度、距离、迁移服务选择和任务迁移比的多目标优化函数,以最小化系统的计算时延与能耗,利用深度强化学习算法对问题求解。并且引入云边协作框架和带有优先级的云端策略经验池,进一步保障了多无人机的计算迁移服务质量。实验结果表明,所提算法在缩减任务传输时延和降低计算能耗方面优于传统优化算法。展开更多
文摘在只有图像和目标文本提示作为输入的情况下,对真实图像进行基于文本引导的编辑是一项极具挑战性的任务。以往基于微调大型预训练扩散模型的方法,往往对源文本特征和目标文本特征进行简单的插值组合,用于引导图像生成过程,这限制了其编辑能力,同时微调大型扩散模型极易出现过拟合且耗时长的问题。提出了一种基于映射融合嵌入扩散模型的文本引导图像编辑方法(Text-guided image editing method based on diffusion model with mapping-fusion embedding,MFE-Diffusion)。该方法由两部分组成:(1)大型预训练扩散模型与源文本特征向量联合学习框架,使模型可以快速学习以重建给定的原图像;(2)特征映射融合模块,深度融合目标文本与原图像的特征信息,生成条件嵌入,用于引导图像编辑过程。在具有挑战性的文本引导图像编辑基准TEdBench上进行实验验证,结果表明所提方法在图像编辑性能上具有优势。
文摘智能电网中边缘计算迁移技术的应用一定程度上满足了电力业务的实时性要求,然而,随着电网规模的扩大,电力终端设备接入密度越发增高,分布情况越发复杂,传统的静态边缘计算节点难以完全覆盖分散的电力终端设备,进而导致计算迁移性能和效率过低。提出了一种基于双重延迟深度确定性策略梯度的多无人机辅助计算迁移算法(Collaborative Cloud‑Edge Computing Offload‑ing Based on TD3,CeCO‑TD3),该算法构建了一个联合无人机飞行角度、距离、迁移服务选择和任务迁移比的多目标优化函数,以最小化系统的计算时延与能耗,利用深度强化学习算法对问题求解。并且引入云边协作框架和带有优先级的云端策略经验池,进一步保障了多无人机的计算迁移服务质量。实验结果表明,所提算法在缩减任务传输时延和降低计算能耗方面优于传统优化算法。