间接边界积分方程法IBIEM(indirect boundary integral equation method)求解波动问题时控制方程基本解构造依赖经验判断和试算,导致宽频散射求解不够稳定。本文通过粒子群优化-人工神经网络建立IBIEM控制方程基本解构造模型,以数据驱...间接边界积分方程法IBIEM(indirect boundary integral equation method)求解波动问题时控制方程基本解构造依赖经验判断和试算,导致宽频散射求解不够稳定。本文通过粒子群优化-人工神经网络建立IBIEM控制方程基本解构造模型,以数据驱动代替经验判断,处理基本解构造过程中的不确定性。以二维峡谷对平面SH波散射IBIEM模拟为例验证所建模型的可靠性。结果表明,所建IBIEM控制方程基本解构造模型可对虚拟波源位置和数量的最优设置进行有效预测,兼顾计算效率和精度,大幅提高IBIEM求解波动问题时的稳定性和高效性;虚拟波源位置和数量最优设置方案受入射波频率和场地几何条件影响显著,且表现出非单调变化特征,依据经验设置基本解可靠性较差,以数据驱动的预测模型具有明显优势。本文所建方法可为IBIEM求解其他类型场地地震波动问题提供参考。展开更多
文摘间接边界积分方程法IBIEM(indirect boundary integral equation method)求解波动问题时控制方程基本解构造依赖经验判断和试算,导致宽频散射求解不够稳定。本文通过粒子群优化-人工神经网络建立IBIEM控制方程基本解构造模型,以数据驱动代替经验判断,处理基本解构造过程中的不确定性。以二维峡谷对平面SH波散射IBIEM模拟为例验证所建模型的可靠性。结果表明,所建IBIEM控制方程基本解构造模型可对虚拟波源位置和数量的最优设置进行有效预测,兼顾计算效率和精度,大幅提高IBIEM求解波动问题时的稳定性和高效性;虚拟波源位置和数量最优设置方案受入射波频率和场地几何条件影响显著,且表现出非单调变化特征,依据经验设置基本解可靠性较差,以数据驱动的预测模型具有明显优势。本文所建方法可为IBIEM求解其他类型场地地震波动问题提供参考。