We numerically investigate the effects of the exciton generation rate G, temperature T, the active layer thickness d and the position of LUMO level EL related to the cathode work function Wc at a given energy gap on t...We numerically investigate the effects of the exciton generation rate G, temperature T, the active layer thickness d and the position of LUMO level EL related to the cathode work function Wc at a given energy gap on the opencircuit voltage Voc of single layer organic solar cells with Schottky contact. It is demonstrated that open-circuit voltage increases concomitantly with the decreasing cathode work function Wc for given anode work functions and exciton generation rates. In the case of given cathode and anode work functions, the open-circuit voltage first increases with the exciton generation rate and then reaches a saturation value, which equals to the builtin voltage. Additionally, it is worth noting that a significant improvement to Voc could be made by selecting an organic material which has a relative high LUMO level (low |EL| value). However, Voc decreases as the temperature increases, and the decreasing rate reduces with the enhancement of exeiton generation rate. Our study also shows that it is of no benefit to improve the open-circuit voltage by increasing the device thickness because of an enhanced charge recombination in thicker devices.展开更多
基金Supported by the National Science Foundation of China under Grant No 10974074, and the Natural Science Foundation of Gansu Province (No 0803RJZA104).
文摘We numerically investigate the effects of the exciton generation rate G, temperature T, the active layer thickness d and the position of LUMO level EL related to the cathode work function Wc at a given energy gap on the opencircuit voltage Voc of single layer organic solar cells with Schottky contact. It is demonstrated that open-circuit voltage increases concomitantly with the decreasing cathode work function Wc for given anode work functions and exciton generation rates. In the case of given cathode and anode work functions, the open-circuit voltage first increases with the exciton generation rate and then reaches a saturation value, which equals to the builtin voltage. Additionally, it is worth noting that a significant improvement to Voc could be made by selecting an organic material which has a relative high LUMO level (low |EL| value). However, Voc decreases as the temperature increases, and the decreasing rate reduces with the enhancement of exeiton generation rate. Our study also shows that it is of no benefit to improve the open-circuit voltage by increasing the device thickness because of an enhanced charge recombination in thicker devices.