期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于稳定性语义聚类的相关模型估计 被引量:1
1
作者 孙芯宇 吴江 蒲强 《计算机应用》 CSCD 北大核心 2016年第5期1313-1318,共6页
针对由不稳定聚类估计的相关模型影响检索性能的问题,提出了基于稳定性语义聚类的相关模型(SSRM)。首先利用初始查询前N个结果文档构成反馈数据集;然后探测数据集中稳定的语义类别数量;接着从稳定性语义聚类中选择与用户查询最相似的语... 针对由不稳定聚类估计的相关模型影响检索性能的问题,提出了基于稳定性语义聚类的相关模型(SSRM)。首先利用初始查询前N个结果文档构成反馈数据集;然后探测数据集中稳定的语义类别数量;接着从稳定性语义聚类中选择与用户查询最相似的语义类别估计SSRM;最后通过实验对模型的检索性能进行了验证。对TREC数据集5个子集的实验结果显示,SSRM相比相关模型(RM)、语义相关模型(SRM),平均准确率(MAP)性能最少提高了32.11%和0.41%;相比基于聚类的文档模型(CBDM)、基于LDA的文档模型(LBDM)和Resampling等基于聚类的检索方法,MAP性能最少提高了23.64%,19.59%和8.03%。实验结果表明,SSRM有利于改善检索性能。 展开更多
关键词 信息检索 语义聚类 稳定性验证 独立分量分析 相关模型估计
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部