In real life, the rumor propagation is influenced by many factors. The complexity and uncertainty of human psychology make the diffusion model more challenging to depict. In order to establish a comprehensive propagat...In real life, the rumor propagation is influenced by many factors. The complexity and uncertainty of human psychology make the diffusion model more challenging to depict. In order to establish a comprehensive propagation model, in this paper, we take some psychological factors into consideration to mirror rumor propagation. Firstly, we use the Ridenour model to combine the trust mechanism with the correlation mechanism and propose a modified rumor propagation model. Secondly, the mean-field equations which describe the dynamics of the modified SIR model on homogenous and heterogeneous networks are derived. Thirdly, a steady-state analysis is conducted for the spreading threshold and the final rumor size. Fourthly, we investigate rumor immunization strategies and obtain immunization thresholds. Next, simulations on different networks are carried out to verify the theoretical results and the effectiveness of the immunization strategies.The results indicate that the utilization of trust and correlation mechanisms leads to a larger final rumor size and a smaller terminal time. Moreover, different immunization strategies have disparate effectiveness in rumor propagation.展开更多
Information diffusion in complex networks has become quite an active research topic.As an important part of this field,intervention against information diffusion processes is attracting ever-increasing attention from ...Information diffusion in complex networks has become quite an active research topic.As an important part of this field,intervention against information diffusion processes is attracting ever-increasing attention from network and control engineers.In particular,it is urgent to design intervention schemes for the coevolutionary dynamics between information diffusion processes and coupled networks.For this purpose,we comprehensively study the problem of information diffusion intervention over static and temporal coupling networks.First,individual interactions are described by a modified activitydriven network(ADN)model.Then,we establish a novel node-based susceptible-infected-recovered-susceptible(SIRS)model to characterize the information diffusion dynamics.On these bases,three synergetic intervention strategies are formulated.Second,we derive the critical threshold of the controlled-SIRS system via stability analysis.Accordingly,we exploit a spectral optimization scheme to minimize the outbreak risk or the required budget.Third,we develop an optimal control scheme of dynamically allocating resources to minimize both system loss and intervention expense,in which the optimal intervention inputs are obtained through optimal control theory and a forward-backward sweep algorithm.Finally,extensive simulation results validate the accuracy of theoretical derivation and the performance of our proposed intervention schemes.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 62071248)the Postgraduate Research Innovation Program of Jiangsu Province,China(Grant No. KYCX20 0730)。
文摘In real life, the rumor propagation is influenced by many factors. The complexity and uncertainty of human psychology make the diffusion model more challenging to depict. In order to establish a comprehensive propagation model, in this paper, we take some psychological factors into consideration to mirror rumor propagation. Firstly, we use the Ridenour model to combine the trust mechanism with the correlation mechanism and propose a modified rumor propagation model. Secondly, the mean-field equations which describe the dynamics of the modified SIR model on homogenous and heterogeneous networks are derived. Thirdly, a steady-state analysis is conducted for the spreading threshold and the final rumor size. Fourthly, we investigate rumor immunization strategies and obtain immunization thresholds. Next, simulations on different networks are carried out to verify the theoretical results and the effectiveness of the immunization strategies.The results indicate that the utilization of trust and correlation mechanisms leads to a larger final rumor size and a smaller terminal time. Moreover, different immunization strategies have disparate effectiveness in rumor propagation.
基金the National Natural Science Foundation of China(Grant No.62071248)。
文摘Information diffusion in complex networks has become quite an active research topic.As an important part of this field,intervention against information diffusion processes is attracting ever-increasing attention from network and control engineers.In particular,it is urgent to design intervention schemes for the coevolutionary dynamics between information diffusion processes and coupled networks.For this purpose,we comprehensively study the problem of information diffusion intervention over static and temporal coupling networks.First,individual interactions are described by a modified activitydriven network(ADN)model.Then,we establish a novel node-based susceptible-infected-recovered-susceptible(SIRS)model to characterize the information diffusion dynamics.On these bases,three synergetic intervention strategies are formulated.Second,we derive the critical threshold of the controlled-SIRS system via stability analysis.Accordingly,we exploit a spectral optimization scheme to minimize the outbreak risk or the required budget.Third,we develop an optimal control scheme of dynamically allocating resources to minimize both system loss and intervention expense,in which the optimal intervention inputs are obtained through optimal control theory and a forward-backward sweep algorithm.Finally,extensive simulation results validate the accuracy of theoretical derivation and the performance of our proposed intervention schemes.