SmB6, a topological Kondo insulator, with a gapped bulk state and metallic surface state has aroused great research interest. Here, we report an exotic hysteresis behavior of magnetoresistance in individual SmB6 nanow...SmB6, a topological Kondo insulator, with a gapped bulk state and metallic surface state has aroused great research interest. Here, we report an exotic hysteresis behavior of magnetoresistance in individual SmB6 nanowire in a temperature range in which both surface and bulk states contribute to the total conductance. Under a magnetic field parallel to the SmB6 nanowire, the resistance suddenly increases at the turning point from up-sweep to down-sweep of the magnetic field. The magnetoresistance hysteresis loops are well consistent with the magnetocaloric effect. Our results suggest that the SmB6 nanowires possess potential applications in the magnetic cooling technology.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0300802)the National Natural Science Foundation of China(Grant Nos.61825401 and 11774004)
文摘SmB6, a topological Kondo insulator, with a gapped bulk state and metallic surface state has aroused great research interest. Here, we report an exotic hysteresis behavior of magnetoresistance in individual SmB6 nanowire in a temperature range in which both surface and bulk states contribute to the total conductance. Under a magnetic field parallel to the SmB6 nanowire, the resistance suddenly increases at the turning point from up-sweep to down-sweep of the magnetic field. The magnetoresistance hysteresis loops are well consistent with the magnetocaloric effect. Our results suggest that the SmB6 nanowires possess potential applications in the magnetic cooling technology.