针对航空发动机的突发故障,提出了一种基于多状态混合高斯隐马尔科夫模型(mixture of Gaussian-hidden Markov model,简称MOG-HMM)和Viterbi算法相结合的预测方法。首先,根据航空发动机突发故障的历史监测数据建立多状态MOG-HMM模型,确...针对航空发动机的突发故障,提出了一种基于多状态混合高斯隐马尔科夫模型(mixture of Gaussian-hidden Markov model,简称MOG-HMM)和Viterbi算法相结合的预测方法。首先,根据航空发动机突发故障的历史监测数据建立多状态MOG-HMM模型,确定状态数、状态转移矩阵、观察值概率分布以及最终的突发故障状态;然后,对新采集的观测数据,通过Viterbi算法解码出该观测数据对应的当前状态;最后,计算该状态到达突发故障状态的时间间隔,从而可以对突发故障进行预测。仿真和实验结果表明,该方法能够实现对突发故障的预测,并且符合标准预测指标的要求。展开更多
针对现有的时变自回归(Time-Varying Autoregressive,TVAR)模型应用于滚动轴承故障诊断中的问题,提出一种前向估计与后向估计相结合的改进模型。该模型在引入时变遗忘因子的基础上,定义了前后向联合估计的均方误差并对基函数的加权系数...针对现有的时变自回归(Time-Varying Autoregressive,TVAR)模型应用于滚动轴承故障诊断中的问题,提出一种前向估计与后向估计相结合的改进模型。该模型在引入时变遗忘因子的基础上,定义了前后向联合估计的均方误差并对基函数的加权系数求偏导,得到加权系数的计算公式,然后利用递推最小二乘(Recursive Least Squares,RLS)方法推导了该计算公式的递推形式。针对滚动轴承内圈故障的仿真和实验信号,使用改进前后的模型进行时频分析。仿真和实验结果表明,改进后的模型有效地克服了现有模型无法获得初始时刻频率估计的缺点,具有更高的时频估计精度、更强的抗噪声能力,能够更加有效地提取滚动轴承的故障特征频率。展开更多
针对滚动轴承的剩余寿命预测问题,提出一种基于多传感器信号融合的深度长短期记忆网络预测模型。利用深度学习和长短期记忆网络组合来构造深度长短期记忆网络;将多个传感器信号数据进行融合处理,从而通过深度学习结构能够发现传感器时...针对滚动轴承的剩余寿命预测问题,提出一种基于多传感器信号融合的深度长短期记忆网络预测模型。利用深度学习和长短期记忆网络组合来构造深度长短期记忆网络;将多个传感器信号数据进行融合处理,从而通过深度学习结构能够发现传感器时序信号中隐藏的长期依赖关系;通过网格搜索策略、自适应矩估计算法(Adaptive Moment Estimation Algorithm,AMEA)优化深度长短期记忆网络的网络结构和参数,并且引入一种主动丢弃法以缓解过度拟合问题。实验结果表明该方法具有更高的预测准确性和稳定性。展开更多
文摘针对航空发动机的突发故障,提出了一种基于多状态混合高斯隐马尔科夫模型(mixture of Gaussian-hidden Markov model,简称MOG-HMM)和Viterbi算法相结合的预测方法。首先,根据航空发动机突发故障的历史监测数据建立多状态MOG-HMM模型,确定状态数、状态转移矩阵、观察值概率分布以及最终的突发故障状态;然后,对新采集的观测数据,通过Viterbi算法解码出该观测数据对应的当前状态;最后,计算该状态到达突发故障状态的时间间隔,从而可以对突发故障进行预测。仿真和实验结果表明,该方法能够实现对突发故障的预测,并且符合标准预测指标的要求。
文摘针对现有的时变自回归(Time-Varying Autoregressive,TVAR)模型应用于滚动轴承故障诊断中的问题,提出一种前向估计与后向估计相结合的改进模型。该模型在引入时变遗忘因子的基础上,定义了前后向联合估计的均方误差并对基函数的加权系数求偏导,得到加权系数的计算公式,然后利用递推最小二乘(Recursive Least Squares,RLS)方法推导了该计算公式的递推形式。针对滚动轴承内圈故障的仿真和实验信号,使用改进前后的模型进行时频分析。仿真和实验结果表明,改进后的模型有效地克服了现有模型无法获得初始时刻频率估计的缺点,具有更高的时频估计精度、更强的抗噪声能力,能够更加有效地提取滚动轴承的故障特征频率。
文摘针对滚动轴承的剩余寿命预测问题,提出一种基于多传感器信号融合的深度长短期记忆网络预测模型。利用深度学习和长短期记忆网络组合来构造深度长短期记忆网络;将多个传感器信号数据进行融合处理,从而通过深度学习结构能够发现传感器时序信号中隐藏的长期依赖关系;通过网格搜索策略、自适应矩估计算法(Adaptive Moment Estimation Algorithm,AMEA)优化深度长短期记忆网络的网络结构和参数,并且引入一种主动丢弃法以缓解过度拟合问题。实验结果表明该方法具有更高的预测准确性和稳定性。